リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Protective role of residual Tet2/Tet3 alleles in development of myeloid leukemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Protective role of residual Tet2/Tet3 alleles in development of myeloid leukemia

SHRESTHA, RAKSHA 筑波大学 DOI:10.15068/0002000732

2021.07.28

概要

Loss-of-function mutations in ten-eleven translocation-2 (TET2) are recurrent events in acute myeloid leukemia (AML) as well as in preleukemic hematopoietic stem cells (HSCs) of age- related clonal hematopoiesis. TET3 mutations are infrequent in AML, but the level of TET3 expression in HSCs has been found to decline with age. I examined the impact of gradual decrease of TET function in AML development by generating mice with Tet deficiency at various degrees. Tet2f/f and Tet3f/f mice were crossed with mice expressing Mx1-Cre to generate Tet2f/wtTet3f/fMx-Cre+ (T2ΔT3), Tet2f/fTet3f/wtMx-Cre+ (ΔT2T3), and Tet2f/fTet3f/fMx- Cre+ (ΔT2ΔT3) mice. All ΔT2ΔT3 mice died of aggressive AML at a median survival of 10.7 weeks. By comparison, T2ΔT3 and ΔT2T3 mice developed AML at longer latencies, with a median survival of ∼27 weeks. Remarkably, all 9 T2ΔT3 and 8 ΔT2T3 mice with AML showed inactivation of the remaining nontargeted Tet2 or Tet3 allele, respectively, owing to exonic loss in either gene or stop-gain mutations in Tet3. Recurrent mutations other than Tet3 were not noted in any mice by whole-exome sequencing. Spontaneous inactivation of residual Tet2 or Tet3 alleles is a recurrent genetic event during the development of AML with Tet insufficiency.

この論文で使われている画像

参考文献

1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. Longo DL, ed. N Engl J Med. 2015;373(12):1136-1152. doi:10.1056/NEJMra1406184.

2. Liesveld JL, Lichtman MA. Acute myeloid leukemia. In: Kaushansky K, Lichtman MA, Prchal JT, et al., eds. Williams Hematology. 9th edition. New York: McGraw-Hill Education; 2016:1373-1436.

3. Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002. Cancer Causes Control. 2008;19(4):379-390. doi:10.1007/s10552-007-9097-2.

4. ⾜⽴ 桂也, ⽯川 裕⼀, 清井 仁. 急性⾻髄性⽩⾎病. In “Principles and Practice ⾎液・造⾎器・リンパ系” (編集:千葉 滋, ⻑⾕川 雄⼀) ⽂光堂, 東京, 2015: 219-229.

5. Campos L, Guyotat D, Archimbaud E, et al. Surface marker expression in adult acute myeloid leukaemia: correlations with initial characteristics, morphology and response to therapy. Br J Haematol. 1989;72(2):161-166. doi:10.1111/j.1365- 2141.1989.tb07677.x.

6. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453-474. doi:10.1182/blood-2009-07- 235358.

7. De Kouchkovsky I, Abdul-Hay M. 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood Cancer J. 2016;6(7):e441-e441. doi:10.1038/bcj.2016.50.

8. Walker A, Marcucci G. Molecular prognostic factors in cytogenetically normal acute myeloid leukemia. Expert Rev Hematol. 2012;5(5):547-558. doi:10.1586/ehm.12.45.

9. DiNardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematology Am Soc Hematol Educ Program. 2016;2016(1):348-355. doi:10.1182/asheducation-2016.1.348.

10. Shah A, Andersson TM-L, Rachet B, Björkholm M, Lambert PC. Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study. Br J Haematol. 2013;162(4):509-516. doi:10.1111/bjh.12425.

11. Meyers J, Yu Y, Kaye JA, Davis KL. Medicare fee-for-service enrollees with primary acute myeloid leukemia: an analysis of treatment patterns, survival, and healthcare resource utilization and costs. Appl Health Econ Health Policy. 2013;11(3):275-286. doi:10.1007/s40258-013-0032-2.

12. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia- associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 2002;62(14):4075- 4080.

13. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 2011 26:5. 2003;17(3):637-641. doi:10.1038/sj.leu.2402834.

14. Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi YG. TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res. 2010;20(12):1390-1393. doi:10.1038/cr.2010.156.

15. Xu Y, Wu F, Tan L, et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell. 2011;42(4):451-464. doi:10.1016/j.molcel.2011.04.005.

16. Xu Y, Xu C, Kato A, et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell. 2012;151(6):1200-1213. doi:10.1016/j.cell.2012.11.014.

17. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11(10):726-734. doi:10.1038/nrc3130.

18. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell. 2014;156(1-2):45-68. doi:10.1016/j.cell.2013.12.019.

19. Walsh CP, Xu GL. Cytosine methylation and DNA repair. Curr Top Microbiol Immunol. 2006;301(Chapter 11):283-315. doi:10.1007/3-540-31390-7_11.

20. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517-534. doi:10.1038/nrg.2017.33.

21. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129-1133. doi:10.1038/nature09303.

22. He Y-F, Li B-Z, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303-1307. doi:10.1126/science.1210944.

23. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5- hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930-935. doi:10.1126/science.1170116.

24. Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14(6):341-356. doi:10.1038/nrm3589.

25. Dawlaty MM, Breiling A, Le T, et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell. 2013;24(3):310-323. doi:10.1016/j.devcel.2012.12.015.

26. Kudo Y, Tateishi K, Yamamoto K, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation. Cancer Sci. 2012;103(4):670- 676. doi:10.1111/j.1349-7006.2012.02213.x.

27. Lian CG, Xu Y, Ceol C, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell. 2012;150(6):1135-1146. doi:10.1016/j.cell.2012.07.033.

28. Liu C, Liu L, Chen X, et al. Decrease of 5-hydroxymethylcytosine is associated with progression of hepatocellular carcinoma through downregulation of TET1. Guan X-Y, ed. PLoS ONE. 2013;8(5):e62828. doi:10.1371/journal.pone.0062828.

29. Yang H, Liu Y, Bai F, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 2013;32(5):663-669. doi:10.1038/onc.2012.67.

30. Huang H, Jiang X, Li Z, et al. TET1 plays an essential oncogenic role in MLL- rearranged leukemia. Proc Natl Acad Sci USA. 2013;110(29):11994-11999. doi:10.1073/pnas.1310656110.

31. Delhommeau F, Dupont S, Valle Della V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289-2301. doi:10.1056/NEJMoa0810069.

32. Metzeler KH, Maharry K, Radmacher MD, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2011;29(10):1373-1381. doi:10.1200/JCO.2010.32.7742.

33. Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-2074. doi:10.1056/NEJMoa1301689.

34. Weissmann S, Alpermann T, Grossmann V, et al. Landscape of <i>TET2</i> mutations in acute myeloid leukemia. Leukemia 2011 26:5. 2012;26(5):934-942. doi:10.1038/leu.2011.326.

35. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553-567. doi:10.1016/j.ccr.2010.11.015.

36. Langemeijer SMC, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838-842. doi:10.1038/ng.391.

37. Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496-2506. doi:10.1056/NEJMoa1013343.

38. Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2011 26:5. 2014;28(2):241-247. doi:10.1038/leu.2013.336.

39. Tefferi A, Pardanani A, Lim K-H, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 2011 26:5. 2009;23(5):905-911. doi:10.1038/leu.2009.47.

40. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498. doi:10.1056/NEJMoa1408617.

41. Jan M, Snyder TM, Corces-Zimmerman MR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. 2012;4(149):149ra118-149ra118. doi:10.1126/scitranslmed.3004315.

42. Xie M, Lu C, Wang J, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472-1478. doi:10.1038/nm.3733.

43. Sun D, Luo M, Jeong M, et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell. 2014;14(5):673-688. doi:10.1016/j.stem.2014.03.002.

44. Truong TP, Sakata-Yanagimoto M, Yamada M, et al. Age-Dependent Decrease of DNA Hydroxymethylation in Human T Cells. J Clin Exp Hematop. 2015;55(1):1-6. doi:10.3960/jslrt.55.1.

45. An J, González-Avalos E, Chawla A, et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat Commun. 2015;6(1):10071. doi:10.1038/ncomms10071.

46. Quivoron C, Couronné L, Valle Della V, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011;20(1):25-38. doi:10.1016/j.ccr.2011.06.003.

47. Ko M, An J, Pastor WA, Koralov SB, Rajewsky K, Rao A. TET proteins and 5- methylcytosine oxidation in hematological cancers. Immunol Rev. 2015;263(1):6-21. doi:10.1111/imr.12239.

48. Moran-Crusio K, Reavie L, Shih A, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20(1):11-24. doi:10.1016/j.ccr.2011.06.001.

49. Li Z, Cai X, Cai C-L, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 2011;118(17):4509-4518. doi:10.1182/blood-2010-12-325241.

50. Muto H, Sakata-Yanagimoto M, Nagae G, et al. Reduced TET2 function leads to T- cell lymphoma with follicular helper T-cell-like features in mice. Blood Cancer J. 2014;4(12):e264-e264. doi:10.1038/bcj.2014.83.

51. Mouly E, Ghamlouch H, Valle Della V, et al. B-cell tumor development in Tet2- deficient mice. Blood Adv. 2018;2(6):703-714. doi:10.1182/bloodadvances.2017014118.

52. Dominguez PM, Ghamlouch H, Rosikiewicz W, et al. TET2 Deficiency Causes Germinal Center Hyperplasia, Impairs Plasma Cell Differentiation, and Promotes B- cell Lymphomagenesis. Cancer Discov. 2018;8(12):1632-1653. doi:10.1158/2159- 8290.CD-18-0657.

53. 真家 紘⼀郎. Tet2とTet3の⼆重⽋損マウスは脱メチル化薬感受性の急性⾻髄性⽩⾎病を発症する. 筑波⼤学博⼠(医学)学位論⽂, 2018.

54. ⽯原 昌朋. Tet2及びTet3遺伝⼦は協調して造⾎細胞の腫瘍発症抑制に働くか. 筑波⼤学修⼠(医科学)学位論⽂, 2018.

55. Kühn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269(5229):1427-1429. doi:10.1126/science.7660125.

56. Kotani S, Yoda A, Kon A, et al. Molecular pathogenesis of disease progression in MLL-rearranged AML. Leukemia 2011 26:5. 2019;33(3):612-624. doi:10.1038/s41375-018-0253-3.

57. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. doi:10.1093/bioinformatics/btp324.

58. Kuilman T, Velds A, Kemper K, et al. CopywriteR: DNA copy number detection from off-target sequence data. Genome Biol. 2015;16(1):49–15. doi:10.1186/s13059-015- 0617-1.

59. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002;12(4):656-664. doi:10.1101/gr.229202.

60. Tefferi A, Lim K-H, Abdel-Wahab O, et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia 2011 26:5. 2009;23(7):1343-1345. doi:10.1038/leu.2009.59.

61. Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113(25):6403-6410. doi:10.1182/blood-2009-02-205690.

62. Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009;114(1):144-147. doi:10.1182/blood-2009-03-210039.

63. Kosmider O, Gelsi-Boyer V, Ciudad M, et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica. 2009;94(12):1676-1681. doi:10.3324/haematol.2009.011205.

64. Merlevede J, Droin N, Qin T, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7(1):10767. doi:10.1038/ncomms10767.

65. Li C, Lan Y, Schwartz-Orbach L, et al. Overlapping Requirements for Tet2 and Tet3 in Normal Development and Hematopoietic Stem Cell Emergence. Cell Rep. 2015;12(7):1133-1143. doi:10.1016/j.celrep.2015.07.025.

66. Carella A, Tejedor JR, García MG, et al. Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer. 2020;146(2):373-387. doi:10.1002/ijc.32520.

67. Rasmussen KD, Jia G, Johansen JV, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015;29(9):910-922. doi:10.1101/gad.260174.115.

68. Pérez C, Martínez-Calle N, Martín-Subero JI, et al. TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. Ballestar E, ed. PLoS ONE. 2012;7(2):e31605. doi:10.1371/journal.pone.0031605.

69. Yang W, Ernst P. SET/MLL family proteins in hematopoiesis and leukemia. Int J Hematol. 2017;105(1):7-16. doi:10.1007/s12185-016-2118-8.

70. Tiziana Storlazzi C, Pieri L, Paoli C, et al. Complex karyotype in a polycythemia vera patient with a novel SETD1B/GTF2H3 fusion gene. Am J Hematol. 2014;89(4):438-442. doi:10.1002/ajh.23659.

71. Huang Y, Rao A. Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet. 2014;30(10):464-474. doi:10.1016/j.tig.2014.07.005.

72. Couronné L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012;366(1):95-96. doi:10.1056/NEJMc1111708.

73. Manteniotis S, Wojcik S, Brauhoff P, et al. Functional characterization of the ectopically expressed olfactory receptor 2AT4 in human myelogenous leukemia. Cell Death Discov. 2016;2(1):15070. doi:10.1038/cddiscovery.2015.70.

74. Manteniotis S, Wojcik S, Göthert JR, et al. Deorphanization and characterization of the ectopically expressed olfactory receptor OR51B5 in myelogenous leukemia cells. Cell Death Discov. 2016;2(1):16010. doi:10.1038/cddiscovery.2016.10.

75. Vosberg S, Hartmann L, Metzeler KH, et al. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation is associated with gain of WT1 alterations and high mutation load. Haematologica. 2018;103(12):e581-e584. doi:10.3324/haematol.2018.193102.

76. DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133(1):7-17. doi:10.1182/blood-2018-08-868752.

77. Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705-2712. doi:10.1182/blood-2014-06-582809.

78. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 2011 26:5. 2011;25(7):1147-1152. doi:10.1038/leu.2011.71.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る