リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「De Novo T790M Mutation in an L858R Epidermal Growth Factor Receptor Mutant-Associated Lung Adenocarcinoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

De Novo T790M Mutation in an L858R Epidermal Growth Factor Receptor Mutant-Associated Lung Adenocarcinoma

Fujiwara Takumi 三重大学

2021.06.29

概要

Background: Lung cancer is the leading cause of mortality for cancer worldwide. A point mutation in exon 21 of the epidermal growth factor receptor resulting in the substitution of arginine for leucine at position 858 (L858R) is a frequent cause of lung adenocarcinoma. Tyrosine kinase inhibitors are effective for treating patients with lung cancer associated with mutant epidermal growth factor receptors but most tumors become resistant shortly after treatment. The substitution of methionine for threonine at position 790 (T790M) on exon 20 is the most frequently acquired mutation leading to resistance to tyrosine kinase inhibitors. Whether the T790M mutation occurred after tyrosine kinase inhibitor therapy or it already existed before therapy is unclear. Methods: Here, we developed mice with tetracycline-inducible lung-specific expression of the full-length genomic DNA of the human epidermal growth factor receptor containing an L858R mutation or both L858R and T790M mutations and evaluated de novo T790M mutation in untreated transgenic mice carrying a single L858R EGFR mutation. Results: The L858R mutation-associated lung adenocarcinoma acquired de novo T790 mutation without previous therapy. Conclusions: The results of this study suggest that lung tumors may spontaneously acquire T790M mutations without any drug-related selective pressure.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Estimating

the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019,

144, 1941–1953. [CrossRef] [PubMed]

Latimer, K.M.; Mott, T.F. Lung cancer: Diagnosis, treatment principles, and screening. Am. Fam. Physician

2015, 91, 250–256. [PubMed]

Shaurova, T.; Zhang, L.; Goodrich, D.W.; Hershberger, P.A. Understanding Lineage Plasticity as a Path

to Targeted Therapy Failure in EGFR-Mutant Non-small Cell Lung Cancer. Front. Genet. 2020, 11, 281.

[CrossRef] [PubMed]

Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.; Yatabe, Y.; Powell, C.A.; Beer, D.;

Riely, G.; Garg, K.; et al. International Association for the Study of Lung Cancer/American Thoracic

Society/European Respiratory Society: International multidisciplinary classification of lung adenocarcinoma:

Executive summary. Proc. Am. Thorac. Soc. 2011, 8, 381–385. [CrossRef]

Socinski, M.A.; Obasaju, C.; Gandara, D.; Hirsch, F.R.; Bonomi, P.; Bunn, P.; Kim, E.S.; Langer, C.J.; Natale, R.B.;

Novello, S.; et al. Clinicopathologic Features of Advanced Squamous NSCLC. J. Thorac. Oncol. 2016, 11,

1411–1422. [CrossRef]

Devarakonda, S.; Morgensztern, D.; Govindan, R. Genomic alterations in lung adenocarcinoma. Lancet Oncol.

2015, 16, e342–e351. [CrossRef]

Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.;

Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl.

J. Med. 2009, 361, 947–957. [CrossRef]

Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.;

Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European

patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre,

open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [CrossRef]

Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.;

Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients

with EGFR-mutant lung cancers. Clin. Cancer Res. 2013, 19, 2240–2247. [CrossRef]

Cancers 2020, 12, 3074

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

12 of 13

Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.;

Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of

Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260.

[CrossRef]

Regales, L.; Balak, M.N.; Gong, Y.; Politi, K.; Sawai, A.; Le, C.; Koutcher, J.A.; Solit, D.B.; Rosen, N.;

Zakowski, M.F.; et al. Development of new mouse lung tumor models expressing EGFR T790M mutants

associated with clinical resistance to kinase inhibitors. PLoS ONE 2007, 2, e810. [CrossRef]

Politi, K.; Zakowski, M.F.; Fan, P.D.; Schonfeld, E.A.; Pao, W.; Varmus, H.E. Lung adenocarcinomas induced

in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to

down-regulation of the receptors. Genes Dev. 2006, 20, 1496–1510. [CrossRef] [PubMed]

Ji, H.; Li, D.; Chen, L.; Shimamura, T.; Kobayashi, S.; McNamara, K.; Mahmood, U.; Mitchell, A.; Sun, Y.;

Al-Hashem, R.; et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and

in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 2006, 9, 485–495. [CrossRef]

Xu, X.; Liu, T.; Wang, Y.; Fu, J.; Yang, Q.; Wu, J.; Zhou, H. miRNA-mRNA Associated with Survival in

Endometrial Cancer. Front. Genet. 2019, 10, 743. [CrossRef] [PubMed]

Rivera-Reyes, A.; Hayer, K.E.; Bassing, C.H. Genomic Alterations of Non-Coding Regions Underlie Human

Cancer: Lessons from T-ALL. Trends Mol. Med. 2016, 22, 1035–1046. [CrossRef]

Oldridge, D.A.; Wood, A.C.; Weichert-Leahey, N.; Crimmins, I.; Sussman, R.; Winter, C.; McDaniel, L.D.;

Diamond, M.; Hart, L.S.; Zhu, S.; et al. Genetic predisposition to neuroblastoma mediated by a LMO1

super-enhancer polymorphism. Nature 2015, 528, 418–421. [CrossRef]

Liu, C.; Tian, X.; Zhang, J.; Jiang, L. Long Non-coding RNA DLEU1 Promotes Proliferation and Invasion by

Interacting With miR-381 and Enhancing HOXA13 Expression in Cervical Cancer. Front. Genet. 2018, 9, 629.

[CrossRef]

Abildgaard, C.; Do Canto, L.M.; Steffensen, K.D.; Rogatto, S.R. Long Non-coding RNAs Involved in Resistance

to Chemotherapy in Ovarian Cancer. Front. Oncol. 2019, 9, 1549. [CrossRef]

Ramirez, M.; Rajaram, S.; Steininger, R.J.; Osipchuk, D.; Roth, M.A.; Morinishi, L.S.; Evans, L.; Ji, W.;

Hsu, C.H.; Thurley, K.; et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer

persister cells. Nat. Commun. 2016, 7, 10690. [CrossRef]

Hata, A.N.; Niederst, M.J.; Archibald, H.L.; Gomez-Caraballo, M.; Siddiqui, F.M.; Mulvey, H.E.; Maruvka, Y.E.;

Ji, F.; Bhang, H.E.; Krishnamurthy Radhakrishna, V.; et al. Tumor cells can follow distinct evolutionary paths

to become resistant to epidermal growth factor receptor inhibition. Nat. Med. 2016, 22, 262–269. [CrossRef]

[PubMed]

Ma, C.; Wei, S.; Song, Y. T790M and acquired resistance of EGFR TKI: A literature review of clinical reports.

J. Thorac. Dis. 2011, 3, 10–18.

Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Janne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.;

Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl.

J. Med. 2005, 352, 786–792. [CrossRef] [PubMed]

Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired

resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR

kinase domain. PLoS Med. 2005, 2, e73. [CrossRef] [PubMed]

Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J.

The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl.

Acad. Sci. USA 2008, 105, 2070–2075. [CrossRef]

Martin-Fernandez, M.L.; Clarke, D.T.; Roberts, S.K.; Zanetti-Domingues, L.C.; Gervasio, F.L. Structure and

Dynamics of the EGF Receptor as Revealed by Experiments and Simulations and Its Relevance to Non-Small

Cell Lung Cancer. Cells 2019, 8, 316. [CrossRef]

Abe, K.; Hazama, M.; Katoh, H.; Yamamura, K.; Suzuki, M. Establishment of an efficient BAC transgenesis

protocol and its application to functional characterization of the mouse Brachyury locus. Exp. Anim. 2004,

53, 311–320. [CrossRef]

D’Alessandro-Gabazza, C.N.; Kobayashi, T.; Boveda-Ruiz, D.; Takagi, T.; Toda, M.; Gil-Bernabe, P.; Miyake, Y.;

Yasukawa, A.; Matsuda, Y.; Suzuki, N.; et al. Development and preclinical efficacy of novel transforming

growth factor-beta1 short interfering RNAs for pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2012, 46,

397–406. [CrossRef]

Cancers 2020, 12, 3074

28.

29.

13 of 13

D’Alessandro-Gabazza, C.N.; Kobayashi, T.; Yasuma, T.; Toda, M.; Kim, H.; Fujimoto, H.; Hataji, O.;

Takeshita, A.; Nishihama, K.; Okano, T.; et al. A Staphylococcus pro-apoptotic peptide induces acute

exacerbation of pulmonary fibrosis. Nat. Commun. 2020, 11, 1539. [CrossRef] [PubMed]

Fujiwara, K.; Kobayashi, T.; Fujimoto, H.; Nakahara, H.; D’Alessandro-Gabazza, C.N.; Hinneh, J.A.;

Takahashi, Y.; Yasuma, T.; Nishihama, K.; Toda, M.; et al. Inhibition of Cell Apoptosis and Amelioration of

Pulmonary Fibrosis by Thrombomodulin. Am. J. Pathol. 2017, 187, 2312–2322. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る