リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana

Zhang, Ru Isozumi, Noriyoshi Mori, Masashi Okuta, Ryuta Singkaravanit-Ogawa, Suthitar Imamura, Tomohiro Kurita, Jun-Ichi Gan, Pamela Shirasu, Ken Ohki, Shinya Takano, Yoshitaka 京都大学 DOI:10.1016/j.jbc.2021.101370

2021.12

概要

Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection, however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species (ROS) triggered by two different pathogen-associated molecular patterns (PAMPs), chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress PAMP-triggered immunity (PTI) in N. benthamiana.

この論文で使われている画像

参考文献

1. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. (2006) Hostmicrobe interactions: Shaping the evolution of the plant immune

response. Cell 124, 803–814

2. Jones, J. D., and Dangl, J. L. (2006) The plant immune system. Nature 444,

323–329

3. Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D. G., Yoshida, K.,

Dong, S., Schornack, S., Zipfel, C., Robatzek, S., Hogenhout, S. A., and

Kamoun, S. (2012) Effector biology of plant-associated organisms:

Concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77,

235–247

4. Cui, H., Tsuda, K., and Parker, J. E. (2015) Effector-triggered immunity:

From pathogen perception to robust defense. Annu. Rev. Plant Biol. 66,

487–511

5. Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O’Connell, R. J., Narusaka, Y.,

Takano, Y., Kubo, Y., and Shirasu, K. (2013) Comparative genomic and

transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197, 1236–1249

6. O’Connell, R. J., Thon, M. R., Hacquard, S., Amyotte, S. G., Kleemann, J.,

Torres, M. F., Damm, U., Buiate, E. A., Epstein, L., Alkan, N., Altmuller, J.,

Alvarado-Balderrama, L., Bauser, C. A., Becker, C., Birren, B. W., et al.

(2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi

deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060–

1065

7. Perfect, S. E., Hughes, H. B., O’Connell, R. J., and Green, J. R. (1999)

Colletotrichum: A model genus for studies on pathology and fungal-plant

interactions. Fungal Genet. Biol. 27, 186–198

8. Kubo, Y., Nakamura, H., Kobayashi, K., Okuno, T., and Furusawa, I.

(1991) Cloning of a melanin biosynthetic gene essential for appressorial

penetration of Colletotrichum lagenarium. Mol. Plant Microbe Interact. 4,

440–445

9. Kubo, Y., and Takano, Y. (2013) Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J. Gen. Plant

Pathol. 79, 233–242

10. Cannon, P. F., Damm, U., Johnston, P. R., and Weir, B. S. (2012) Colletotrichum - current status and future directions. Stud. Mycol. 73, 181–

213

11. Liu, B., Wasilwa, L. A., Morelock, T. E., O’Neill, N. R., and Correll, J. C.

(2007) Comparison of Colletotrichum orbiculare and several allied Colletotrichum spp. for mtDNA RFLPs, intron RFLP and sequence variation,

vegetative compatibility, and host specificity. Phytopathology 97, 1305–

1314

12. Goodin, M. M., Zaitlin, D., Naidu, R. A., and Lommel, S. A. (2008)

Nicotiana benthamiana: Its history and future as a model for plantpathogen interactions. Mol. Plant Microbe Interact. 21, 1015–1026

13. Shen, S., Goodwin, P. H., and Hsiang, T. (2001) Infection of Nicotiana

species by the anthracnose fungus, Colletotrichum orbiculare. Eur. J. Plant

Pathol. 107, 767–773

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Effector with unique structure suppresses plant immunity

14. Takano, Y., Takayanagi, N., Hori, H., Ikeuchi, Y., Suzuki, T., Kimura, A.,

and Okuno, T. (2006) A gene involved in modifying transfer RNA is

required for fungal pathogenicity and stress tolerance of Colletotrichum

lagenarium. Mol. Microbiol. 60, 81–92

15. Irieda, H., Maeda, H., Akiyama, K., Hagiwara, A., Saitoh, H., Uemura, A.,

Terauchi, R., and Takano, Y. (2014) Colletotrichum orbiculare secretes

virulence effectors to a biotrophic interface at the primary hyphal neck via

exocytosis coupled with SEC22-mediated traffic. Plant Cell 26, 2265–

2281

16. Yoshino, K., Irieda, H., Sugimoto, F., Yoshioka, H., Okuno, T., and

Takano, Y. (2012) Cell death of Nicotiana benthamiana is induced by

secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a

homologue of CgDN3. Mol. Plant Microbe Interact. 25, 625–636

17. Isozumi, N., Inoue, Y., Imamura, T., Mori, M., Takano, Y., and Ohki, S.

(2019) Ca2+-dependent interaction between calmodulin and CoDN3, an

effector of Colletotrichum orbiculare. Biochem. Biophys. Res. Commun.

514, 803–808

18. Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H.,

Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa,

S., and Takano, Y. (2019) Conserved fungal effector suppresses PAMPtriggered immunity by targeting plant immune kinases. Proc. Natl.

Acad. Sci. U. S. A. 116, 496–505

19. Shimada, C., Lipka, V., O’Connel, R., Okuno, T., Schulze-Lefert, P., and

Takano, Y. (2006) Nonhost resistance in Arabidopsis-colletotrichum interactions acts at the cell periphery and requires actin filament function.

Mol. Plant Microbe Interact. 19, 270–279

20. Inagaki, A., Takano, Y., Kubo, Y., Mise, K., and Furusawa, I. (2000)

Construction of an equalized cDNA library from Colletotrichum lagenarium and its application to the isolation of differentially expressed

genes. Can. J. Microbiol. 46, 150–158

21. Armenteros, J. J. A., Tsirigos, K. D., Sonderby, C. K., Petersen, T. N.,

Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2019) SignalP 5.

0 improves signal peptide predictions using deep neural networks. Nat.

Biotechnol. 37, 420–423

22. Ramachandran, S. R., Yin, C. T., Kud, J., Tanaka, K., Mahoney, A. K.,

Xiao, F. M., and Hulbert, S. H. (2017) Effectors from wheat rust fungi

suppress multiple plant defense responses. Phytopathology 107, 75–83

23. Kanneganti, T. D., Huitema, E., Cakir, C., and Kamoun, S. (2006) Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin. Mol.

Plant Microbe Interact. 19, 854–863

24. Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H. (2004) Highly efficient

gene replacements in Neurospora strains deficient for nonhomologous

end-joining. Proc. Natl. Acad. Sci. U. S. A. 101, 12248–12253

25. Dohi, K., and Mori, M. (2007) Expression of active enzymes from an

inducible tomato-mosaic-virus-based vector in cultured transgenic tobacco BY-2 cells. Plant Biotechnol. 24, 367–373

26. Dohi, K., Nishikiori, M., Tamai, A., Ishikawa, M., Meshi, T., and Mori, M.

(2006) Inducible virus-mediated expression of a foreign protein in

suspension-cultured plant cells. Arch. Virol. 151, 1075–1084

27. Costa, L. M., Marshall, E., Tesfaye, M., Silverstein, K. A. T., Mori, M.,

Umetsu, Y., Otterbach, S. L., Papareddy, R., Dickinson, H. G., Boutiller,

K., VandenBosch, K. A., Ohki, S., and Gutierrez-Marcos, J. F. (2014)

Central cell–derived peptides regulate early embryo patterning in flowering plants. Science 344, 168–172

28. Imamura, T., Isozumi, N., Higashimura, Y., Ohki, S., and Mori, M. (2021)

Production of ORF8 protein from SARS-CoV-2 using an inducible virusmediated expression system in suspension-cultured tobacco BY-2 cells.

Plant Cell Rep. 40, 433–436

29. Ohki, S., Dohi, K., Tamai, A., Takeuchi, M., and Mori, M. (2008) Stableisotope labeling using an inducible viral infection system in suspensioncultured plant cells. J. Biomol. NMR 42, 271–277

30. Ohki, S., Takeuchi, M., and Mori, M. (2011) The NMR structure of

stomagen reveals the basis of stomatal density regulation by plant peptide

hormones. Nat. Commun. 2, 512

31. Ito, K., Ikemasu, T., and Ishikawa, T. (1992) Cloning and sequencing of

the xynA gene encoding xylanase A of Aspergillus kawachii. Biosci. Biotechnol. Biochem. 56, 906–912

32. Liao, Y. D., Wang, S. C., Leu, Y. J., Wang, C. F., Chang, S. T., Hong, Y. T.,

Pan, Y. R., and Chen, C. P. (2003) The structural integrity exerted by

N-terminal pyroglutamate is crucial for the cytotoxicity of frog ribonuclease from Rana pipiens. Nucleic Acids Res. 31, 5247–5255

33. Lopez-Mendez, B., and Guntert, P. (2006) Automated protein structure

determination from NMR spectra. J. Am. Chem. Soc. 128, 13112–13122

34. Lee, W., Stark, J. L., and Markley, J. L. (2014) PONDEROSA-C/S: Clientserver based software package for automated protein 3D structure

determination. J. Biomol. NMR 69, 73–75

35. Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T. E., and

Nilges, M. (2007) ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382

36. Schwieters, C., Kuszewski, J., Tjandra, N., and Clore, M. (2003) The

Xplor-NIH NMR molecular structure determination package. J. Magn.

Reson. 160, 65–73

37. Gan, P., Tsushima, A., Narusaka, M., Narusaka, Y., Takano, Y., Kubo, Y.,

and Shirasu, K. (2019) Genome sequence resources for four phytopathogenic fungi from the Colletotrichum orbiculare species complex. Mol.

Plant Microbe Interact. 32, 1088–1090

38. Marino, D., Dunand, C., Puppo, A., and Pauly, N. (2012) A burst of plant

NADPH oxidases. Trends Plant Sci. 17, 9–15

39. Asai, S., Ohta, K., and Yoshioka, H. (2008) MAPK signaling regulates

nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana

benthamiana. Plant Cell 20, 1390–1406

40. Segonzac, C., Feike, D., Gimenez-Ibanez, S., Hann, D. R., Zipfel, C., and

Rathjen, J. P. (2011) Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol.

156, 687–699

41. Yoshioka, H., Numata, N., Nakajima, K., Katou, S., Kawakita, K., Rowland,

O., Jones, J. D., and Doke, N. (2003) Nicotiana benthamiana gp91phox

homologs NbrbohA and NbrbohB participate in H2O2 accumulation and

resistance to Phytophthora infestans. Plant Cell 15, 706–718

42. Campos-Olivas, R., Bruix, M., Santoro, J., Lacadena, J., Martiz del Pozo,

A., Gavilanes, J. G., and Rico, M. (1995) NMR solution structure of the

antifungal protein from Aspergillus giganeteus: Evidence for cysteine

pairing isomerism. Biochemistry 34, 3009–3021

43. Batta, G., Barna, T., Gaspari, Z., Sandor, S., Kover, K. E., Binder, U., Sarg,

B., Kaiserer, L., Chhilar, A. K., Eigentler, A., Leiter, E., Hefedus, N., Pocsi,

I., Linder, H., and Marx, F. (2009) Functional aspects of the solution

structure and dynamics of PAF - a highly-stable antifungal protein from

Penicillium chrysogenum. FEBS J. 276, 2875–2890

44. Caldwell, J. E., Abildgaard, F., Dzakula, Z., Ming, D., Hellekant, G., and

Markley, J. L. (1998) Solution structure of the thermostable sweet-tasting

protein brazzein. Nat. Struct. Mol. Biol. 5, 427–431

45. Graciet, E., Walter, F., O’Maoileidigh, D., Pollmann, S., Meyerowitz, E.

M., Varshavsky, A., and Wellmer, F. (2009) The N-end rule pathway

controls multiple functions during Arabidopsis shoot and leaf development. Proc. Natl. Acad. Sci. U. S. A. 106, 13618–13623

46. Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y., and

Tsuge, T. (2001) Mutation of an arginine biosynthesis gene causes

reduced pathogenicity in Fusarium oxysporum f. sp melonis. Mol. Plant

Microbe Interact. 14, 580–584

47. Asakura, M., Ninomiya, S., Sugimoto, M., Oku, M., Yamashita, S.,

Okuno, T., Sakai, Y., and Takano, Y. (2009) Atg26-mediated pexophagy is

required for host invasion by the plant pathogenic fungus Colletotrichum

orbiculare. Plant Cell 21, 1291–1304

48. Sweigard, J. A., Chumley, F. G., Carroll, A. M., Farrall, L., and Valent, B.

(1997) A series of vectors for fungal transformation. Fungal Genet. Newsl.

44, 52–53

49. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S.,

Batut, P., Chaisson, M., and Gingeras, T. R. (2013) Star: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21

50. Liao, Y., Smyth, G. K., and Shi, W. (2019) The R package Rsubread is

easier, faster, cheaper and better for alignment and quantification of RNA

sequencing reads. Nucleic Acids Res. 47, e47

51. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., and Wold, B.

(2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat. Methods 5, 621–628

J. Biol. Chem. (2021) 297(6) 101370

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Effector with unique structure suppresses plant immunity

52. Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010) edgeR: A

bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics 26, 139–140

53. Keppler, L. D., Baker, C. J., and Atkinson, M. M. (1989) Active oxygen

production during a bacteria-induced hypersensitive reaction in tobacco

suspension cells. Phytopathology 79, 974–978

54. Nagata, T., Nemoto, Y., and Hasezawa, S. (1992) Tobacco BY-2 cell line

as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cyt. 132,

1–30

55. Hagiwara, Y., Komoda, K., Yamanaka, T., Tamai, A., Meshi, T., Funada,

R., Tsuchiya, T., Naito, S., and Ishikawa, M. (2003) Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J. 22, 344–353

56. Takano, Y., Komeda, K., Kojima, K., and Okuno, T. (2001) Proper

regulation of cyclic AMP-dependent protein kinase is required for

growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium. Mol. Plant Microbe Interact. 14, 1149–

1157

57. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micropurification, enrichment, pre-fractionation and storage of peptides for

proteomics using StageTips. Nat. Protoc. 2, 1896–1906

58. Isozumi, N., Masubuchi, Y., Imamura, T., Mori, M., Koga, H., and Ohki,

S. (2021) Structure and antimicrobial activity of NCR169, a nodulespecific cysteine-rich peptide of Medicago truncatula. Sci. Rep. 11, 9923

59. Bodenhausen, G., and Ruben, D. J. (1980) Natural abundance nitrogen-15

NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69,

185–189

60. Kay, L. E., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient

enhanced heteronuclear single quantum correlation spectroscopy with

improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665

61. Fesik, S., and Zuiderwerg, E. R. P. (1988) Heteronuclear threedimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson. 78, 588–593

62. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M., and Clore, G. M. (1989) Overcoming the overlap

problem in the assignment of 1H NMR spectra of larger proteins by use of

14 J. Biol. Chem. (2021) 297(6) 101370

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple

quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: Application to interleukin 1 beta. Biochemistry 28,

6150–6156

Jeener, J., Meier, B. H., Bachman, P., and Ernst, R. R. (1979) Investigation

of exchange processes by two-dimensional NMR spectroscopy. J. Chem.

Phys. 71, 45–46

Bax, A., and Davis, D. G. (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355–

360

Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of

proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: Application to staphylococcal nuclease. Biochemistry 28, 8972–

8979

Piotto, M., Saudek, V., and Sklenar, V. (1992) Gradient-tailored excitation

for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol.

NMR 2, 661–665

Grzesiek, S., and Bax, A. (1993) The importance of not saturating water in

protein NMR. Application to sensitivity enhancement and NOE measurements. J. Am. Chem. Soc. 115, 12593–12594

Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A.

(1995) NMRPipe: A multidimensional spectral processing system based

on UNIX pipes. J. Biomol. NMR 6, 277–293

Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) TALOS+: A

hybrid method for predicting protein backbone torsion angles from NMR

chemical shifts. J. Biomol. NMR 44, 213–223

Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: A program

for display and analysis of macromolecular structures. J. Mol. Graph. 14,

29–32

Delano, W. L. (2002) Pymol: An open-source molecular graphics tool.

CCP4 Newslett. Pro. Crystallogr. 40, 82–92

Buck, M., Boyd, J., Redfield, C., MacKenzie, D. A., Jeenes, D. J., Archer, D.

B., and Dobson, C. M. (1995) Structural determinants of protein dynamics: Analysis of 15N NMR relaxation measurements for main-chain

and side-chain nuclei of hen egg white lysozyme. Biochemistry 34,

4041–4055

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る