リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Liposomal Particle Kinetics in Mouse Amniotic Fluid」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Liposomal Particle Kinetics in Mouse Amniotic Fluid

小川 典子 平山 奈々恵 安部 由美子 島根大学

2023.12

概要

Drug delivery systems, drugs are administered into the amniotic fluid, may contribute to fetal therapy. The present study explored changes in the volume of amniotic fluid from E11.5 through E17.5, and kinetics of calcein-containing liposomal particles incubated in the amniotic fluid collected at E12.5, E14.5, and E16.5 in Jcl/ICR mice. The volume of amniotic fluid increased until E15.5, followed by a sharp decrease at E17.5. The calcein release rate remained within 4% until day 14 in serum and each amniotic fluid. No significant differences were noted in the release rate between the serum and amniotic fluid at various time points. Therefore, the calcein release rate of liposomal nanoparticles in the amniotic fluid remained low and did not differ from that in the serum for as long as 14 days at different time points during gestation. These observations suggest that liposomal nanoparticles remain stable for prolonged periods in the amniotic fluid.

参考文献

1)Bangham AD, Horne RW. Negative staining of

phospholipids and their structural modification by

surface-active agents as observed in the electron

microscope. J Mol Biol. 1964;8:660-668. doi:

10.1016/s0022-2836(64)80115-7.

2) Al-Jamal WT, Kostarelos K. Liposomes: from

a clinically established drug delivery system to a

nanoparticle platform for theranostic nanomedicine.

Acc Chem Res. 2011;44:1094-1104. doi: 10.1021/

ar200105p.

3) Goyal P, Goyal K, Vijaya Kumar SG, Singh

A, Katare OP, Mishra DN. Liposomal drug delivery systems--clinical applications. Acta Pharm.

2005;55:1-25.

4) Torchilin VP. Recent advances with liposomes

as pharmaceutical carriers. Nat Rev Drug Discov.

2005;4:145-160. doi: 10.1038/nrd1632.

5)Allen C, Dos Santos N, Gallagher R, et al. Controlling the physical behavior and biological performance of liposome formulations through use of

surface grafted poly(ethylene glycol)

. Biosci Rep.

2002;22:225-250. doi: 10.1023/a:1020186505848.

6) Caliceti P, Veronese FM. Pharmacokinetic and

biodistribution properties of poly (ethylene glycol)-protein conjugates. Adv Drug Deliv Rev.

59

2003;55:1261-1277. doi: 10.1016/s0169-409x

(03)

00108-x.

7) Kulkarni JA, Cullis PR, van der Meel R. Lipid Nanoparticles Enabling Gene Therapies: From

Concepts to Clinical Utility. Nucleic Acid Ther.

2018;28:146-157. doi: 10.1089/nat.2018.0721.

8) Schmidt A, Morales-Prieto DM, Pastuschek J,

Fröhlich K, Markert UR. Only humans have human placentas: molecular differences between mice

and humans. J Reprod Immunol. 2015;108:65-71.

doi: 10.1016/j.jri.2015.03.001.

9) H a i g D . R e t r o v i r u s e s a n d t h e p l a c e n t a .

Curr Biol. 2 0 1 2;2 2:R6 0 9-6 1 3. doi: 1 0.1 0 1 6/

j.cub.2012.06.002.

10) Gaspar DP, Gaspar MM, Eleutério CV, et al.

Microencapsulated Solid Lipid Nanoparticles as a

Hybrid Platform for Pulmonary Antibiotic Delivery.

Mol Pharm. 2017;14:2977-2990. doi: 10.1021/acs.

molpharmaceut.7b00169.

11)Swingle KL, Billingsley MM, Bose SK, et al.

Amniotic fluid stabilized lipid nanoparticles for

in utero intra-amniotic mRNA delivery. J Control Release. 2022;341:616-633. doi: 10.1016/

j.jconrel.2021.10.031.

12)Landon MB, Galan HL, Jauniaux ERM, et al.

Gabbe’s obstetrics : normal and problem pregnancies. 8th ed. Philadelphia, PA: Elsevier; 2021.

13) Dubil EA, Magann EF. Amniotic fluid as a

vital sign for fetal wellbeing. Australas J Ultrasound Med. 2013;16:62-70. doi: 10.1002/j.22050140.2013.tb00167.x.

14) Renfree MB, Hensleigh HC, McLaren A. Developmental changes in the composition and

amount of mouse fetal fluids. J Embryol Exp

Morphol. 1975;33:435-446.

15) Zhi LJ, Sun AL, Tang D. In situ amplified

photothermal immunoassay for neuron-specific

enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes. Analyst.

2020;145:4164-4172. doi: 10.1039/d0an00417k.

16)van Elk M, van den Dikkenberg JB, Storm G,

Hennink WE, Vermonden T, Heger M. Preclinical

evaluation of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-grafted liposomes for cancer thermochemotherapy.

Int J Pharm. 2018;550:190-199. doi: 10.1016/

j.ijpharm.2018.08.027.

60

OGAWA et al.

17)Al-Jamal WT, Al-Jamal KT, Tian B, Cakebread

A, Halket JM, Kostarelos K. Tumor targeting

of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharm.

2009;6:520-530. doi: 10.1021/mp800187d.

18)Zhang QY, Ho PY, Tu MJ, et al. Lipidation of

polyethylenimine-based polyplex increases serum

stability of bioengineered RNAi agents and offers

more consistent tumoral gene knockdown in vivo.

Int J Pharm. 2018;547:537-544. doi: 10.1016/

j.ijpharm.2018.06.026.

19)Cheung CY, Brace RA. Amniotic fluid volume

and composition in mouse pregnancy. J Soc Gynecol Investig. 2005;12:558-562. doi: 10.1016/

j.jsgi.2005.08.008.

20)Tong XL, Wang L, Gao TB, Qin YG, Qi YQ,

Xu YP. Potential function of amniotic fluid in fetal development---novel insights by comparing the

composition of human amniotic fluid with umbilical cord and maternal serum at mid and late gestation. J Chin Med Assoc. 2009;72:368-373. doi:

10.1016/S1726-4901(09)70389-2.

21) Jørgensen MC, Ahnfelt-Rønne J, Hald J,

Madsen OD, Serup P, Hecksher-Sørensen J. An

illustrated review of early pancreas development

in the mouse. Endocr Rev. 2007;28:685-705. doi:

10.1210/er.2007-0016.

22) Thoby-Brisson M, Trinh JB, Champagnat J,

Fortin G. Emergence of the pre-Bötzinger respi-

ratory rhythm generator in the mouse embryo.

J Neurosci. 2005;25:4307-4318. doi: 10.1523/

JNEUROSCI.0551-05.2005.

23)Alapati D, Zacharias WJ, Hartman HA, et al.

In utero gene editing for monogenic lung disease.

Sci Transl Med. 2019;11:eaav8375. doi: 10.1126/

scitranslmed.aav8375.

24) Hayashi SI, Morishita R, Aoki M, et al. In

vivo transfer of gene and oligodeoxynucleotides

into skin of fetal rats by incubation in amniotic

fluid. Gene Ther. 1996;3:878-885.

25) Truzzi E, Nascimento TL, Iannuccelli V, et

al. In Vivo Biodistribution of Respirable Solid Lipid Nanoparticles Surface-Decorated with

a Mannose-Based Surfactant: A Promising Tool

for Pulmonary Tuberculosis Treatment? Nanomaterials (Basel). 2020;10:568. doi: 10.3390/

nano10030568.

26) Nishijima K, Shukunami K, Yoshinari H, et

al. Interactions among pulmonary surfactant, vernix caseosa, and intestinal enterocytes: intra-amniotic administration of fluorescently liposomes

to pregnant rabbits. Am J Physiol Lung Cell

Mol Physiol. 2012;303:L208-214. doi: 10.1152/

ajplung.00081.2011.

27) Samaridou E, Heyes J, Lutwyche P. Lipid

nanoparticles for nucleic acid delivery: Current

perspectives. Adv Drug Deliv Rev. 2020;154155:37-63. doi: 10.1016/j.addr.2020.06.002.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る