リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Creation of supramolecular biomembrane by the bottom-up self-assembly: Where material science meets biophysics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Creation of supramolecular biomembrane by the bottom-up self-assembly: Where material science meets biophysics

Yasuhara, Kazuma Morigaki, Kenichi 神戸大学

2022

概要

The biological membrane consisting of lipid bilayer and associated proteins possesses unique material properties that are critical to the membrane-based biological functions such as signal transduction and energy conversion [1]. The lipid bilayer is a two-dimensional fluid, in which membrane-associated molecules can laterally diffuse and interact with each other. The lipid membrane also acts as a permeation barrier towards water-soluble molecules, forming microscopic / nanoscopic compartments. These unique physicochemical properties of the biological membrane have important implications in material science, and fostered the development of biomimetic materials and systems. On the other hand, novel synthetic materials have a potential to be utilized in the fundamental studies of membrane biophysics. Bottom-up approaches based on the self-assembly of materials are promising to reproduce unique membrane structures and functions, providing insight into the machinery of the biological membrane and enabling a wide range of applications. In this article, we briefly introduce some recent studies to create novel artificial biomembranes using not only conventional phospholipids but also synthetic polymers, nanoparticles, and their hybrids to explore the interface between biophysics and material science. These topics are featured in the corresponding symposium in the 60th Annual Meeting of the Biophysical Society of Japan in 2022 where Drs. Morigaki, Sugihara, Tero, Fijii, Yusa, Yasuhara, and Mr. Masuda delivered invited lectures.

参考文献

[1] Edidin, M. Lipids on the frontier: a century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 4, 414-418 (2003). https://doi.org/10.1038/nrm1102

[2] Drab, E., Sugihara, K. Cooperative function of LL-37 and HNP1 protects mammalian cell membranes from lysis. Biophys. J. 119, 2440-2450 (2020). https://doi.org/10.1016/j.bpj.2020.10.031

[3] Kurokawa, C., Fujiwara, K., Morita, M., Kawamata, I., Kawagishi, Y., Sakai, A., et al. DNA cytoskeleton for stabilizing artificial cells. Proc. Natl. Acad. Sci. U.S.A. 114, 7228-7233 (2017). https://www.pnas.org/cgi/doi/10.1073/pnas.1702208114

[4] Morigaki, K., Tanimoto, Y. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity. Biochim. Biophys. Acta 1860, 2012-2017 (2018). https://doi.org/10.1016/j.bbamem.2018.03.010

[5] Goh, M. W. S., Tero, R. Cholesterol-induced microdomain formation in lipid bilayer membranes consisting of completely miscible lipids. Biochim. Biophys. Acta 1863, 183626 (2021). https://doi.org/10.1016/j.bbamem.2021.183626

[6] Goh, M. W. S., Tero, R. Non-raft submicron domain formation in cholesterol-containing lipid bilayers induced by polyunsaturated phosphatidylethanolamine. Colloids Surf. B 210, 112235 (2022). https://doi.org/10.1016/j.colsurfb.2021.112235

[7] Tero, R., Fukumoto, K., Motegi, T., Yoshida, M., Niwano, M., Hirano-Iwata, A. Formation of cell membrane component domains in artificial lipid bilayer. Sci. Rep. 7, 17905 (2017). https://doi.org/10.1038/s41598-017- 18242-9

[8] Groves, J. T., Boxer, S. G. Micropattern formation in supported lipid membranes. Acc. Chem Res. 35, 149-157 (2002). https://doi.org/10.1021/ar950039m

[9] Morigaki, K., Baumgart, T., Offenhäusser, A., Knoll, W. Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid. Angew. Chem., Int. Ed. 40, 172-174 (2001). https://doi.org/10.1002/1521-3773(20010105)40:1<172::AID-ANIE172>3.0.CO;2-G

[10] Ando, K., Tanabe, M., Morigaki, K. Nanometric gap structure with fluid lipid bilayer for the selective transport and detection of biological molecules. Langmuir 32, 7958-7964 (2016). https://doi.org/10.1021/acs.langmuir.6b01405

[11] Komatsu, R., Tanimoto, Y., Ando, K., Yasuhara, K., Iwasaki, Y., Hayashi, F., et al. Nanofluidic model membrane for the single molecule observation of membrane proteins. Langmuir 38, 7234-7243 (2022). https://doi.org/10.1021/acs.langmuir.2c00724

[12] Okada, S., Peng, S., Spevak, W., Charych, D. Color and chromism of polydiacetylene vesicles. Acc. Chem. Res. 31, 229-239 (1998). https://doi.org/10.1021/ar970063v

[13] Juhasz, L., Ortuso, R. D., Sugihara, K. Quantitative and anisotropic mechanochromism of polydiacetylene at nanoscale. Nano Lett. 21, 543-549 (2021). https://doi.org/10.1021/acs.nanolett.0c04027

[14] Yasuhara, K., Arakida, J., Ravula, T., Ramadugu, S., Sahoo, B., Kikuchi, J., et al. Spontaneous lipid nanodisc fomation by amphiphilic polymethacrylate copolymers. J. Am. Chem. Soc. 139, 18657-18663 (2017). https://doi.org/10.1021/jacs.7b10591

[15] Sahoo, B. R., Genjo, T., Bekier, M., Cox, S. J., Stoddard, A. K., Ivanova, M., et al. Alzheimer's amyloid-beta intermediates generated using polymer-nanodiscs. Chem. Commun. 54, 12883-12886 (2018). https://doi.org/10.1039/c8cc07921h

[16] Tsukamoto, M., Zappala, E., Caputo, G., Kikuchi, J., Najarian, K., Kuroda, K., et al. Mechanistic study of membrane disruption by antimicrobial methacrylate random copolymers by the single giant vesicle method. Langmuir 37, 9982-9995 (2021). https://doi.org/10.1021/acs.langmuir.1c01047

[17] Nakai, K., Nishiuchi, M., Inoue, M., Ishihara, K., Sanada, Y., Sakurai, K., et al. Preparation and characterization of polyion complex micelles with phosphobetaine shells. Langmuir 29, 9651-9661 (2013). https://doi.org/10.1021/la401063b

[18] Nakai, K., Ishihara, K., Kappl, M., Fujii, S., Nakamura, Y., Yusa, S. Polyion Complex vesicles with solvated phosphobetaine shells formed from oppositely charged diblock copolymers. Polymers 9, 49 (2017). https://doi.org/10.3390/polym9020049

[19] Nakai, K., Ishihara, K., Yusa, S. Preparation of giant polyion complex vesicles (G-PICsomes) with polyphosphobetaine shells composed of oppositely charged diblock copolymers. Chem. Lett. 46, 824-827 (2017). https://doi.org/10.1246/cl.170168

[20] Geyer, F., Asaumi, Y., Vollmer, D., Butt, H., Nakamura, Y., Fujii, S. Polyhedral liquid marbles. Adv. Func. Mat. 1808826 (2019). https://doi.org/10.1002/adfm.201808826

[21] Kasahara, M., Akimoto, S., Hariyama, T., Takaku, Y., Yusa, S., Okada, S., et al. Liquid marbles in nature: craft of aphids for survival. Langmuir 35, 6169-6178 (2019). https://doi.org/10.1021/acs.langmuir.9b00771

[22] Bangham, A. D., Horne, R. W. Negative staining of phospholipids and their structural modification by surface- active agents as observed in the electron microscope. J. Mol. Biol. 8, 660-668 (1964). https://doi.org/10.1016/s0022-2836(64)80115-7

参考文献をもっと見る