リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bedrock Groundwater Catchment Area Unveils Rainfall‐Runoff Processes in Headwater Basins」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bedrock Groundwater Catchment Area Unveils Rainfall‐Runoff Processes in Headwater Basins

Masaoka, N. Kosugi, K. Fujimoto, M. 京都大学 DOI:10.1029/2021WR029888

2021.09

概要

Bedrock groundwater (BGW) has a contribution area that differs from that of the surface watershed. To date, there has been no analysis using BGW observations to determine to what extent the BGW catchment area influences surface runoff characteristics. This study determined the BGW catchment area from the water table, using densely nested boring wells (61 in bedrock and three in the soil layer) drilled in the granitic basin (2.3 ha). Streamflow runoff was also measured concurrently across the entire watershed (F0) and the subwatersheds (F1 to F6). The BGW catchment area of F3 accounted for 191% of the watershed area derived from surface topography, reducing the area of adjacent watersheds through cross-watershed flow. The annual precipitation input to the BGW catchment area and baseflow volume was highly correlated, indicating that the BGW catchment area reflected the actual catchment effect in the bedrock layer more accurately than the surface watershed area. The degree of bedrock weathering showed that the BGW table was distributed along the boundary of the CL–CM classes. The estimated actual permeability of the CM class bedrock based on the deep percolation rate suggests that the depth near the CL–CM boundary is the hydrological basement surface; this defines the BGW catchment area. This study demonstrates that the BGW catchment area concept provides an accurate prediction of streamflow runoff in mountainous headwater basins that are heavily governed by hydrological processes in bedrock.

この論文で使われている画像

参考文献

Asano, Y., Ohte, N., & Uchida, T. (2004). Sources of weathering-derived solutes in two granitic catchments with contrasting forest growth.

Hydrological Processes, 18(4), 651–666. https://doi.org/10.1002/hyp.1260

Asano, Y., Uchida, T., & Ohte, N. (2002). Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan.

Journal of Hydrology, 261(1–4), 173–192. https://doi.org/10.1016/s0022-1694(02)00005-7

Asano, Y., Uchida, T., & Ohte, N. (2003). Hydrologic and geochemical influences on the dissolved silica concentration in natural water in

a steep headwater catchment. Geochimica et Cosmochimica Acta, 67(11), 1973–1989. https://doi.org/10.1016/S0016-7037(02)01342-X

Banks, E. W., Simmons, C. T., Love, A. J., Cranswick, R., Werner, A. D., Bestland, E. A., et al. (2009). Fractured bedrock and saprolite hydrogeologic controls on groundwater/surface-water interaction: A conceptual model (Australia). Hydrogeology Journal, 17(8), 1969–1989.

https://doi.org/10.1007/s10040-009-0490-7

Brönnimann, C., Stähli, M., Schneider, P., Seward, L., & Springman, S. M. (2013). Bedrock exfiltration as a triggering mechanism for shallow landslides. Water Resources Research, 49, 5155–5167. https://doi.org/10.1002/wrcr.20386

Deere, D. U. (1968). Geological considerations. In K. G. Stagg, & D. C. Ziekiewicz (Eds.), Rock Mechanics in Engineering Practice (pp. 1–20).

London: Wiley.

Devito, K., Creed, I., Gan, T., Mendoza, C., Petrone, R., Silins, U., & Smerdon, B. (2005). A framework for broad-scale classification of hydrologic response units on the Boreal Plain: Is topography the last thing to consider? Hydrological Processes, 19(8), 1705–1714. https://

doi.org/10.1002/hyp.5881

Dickinson, W., & Whiteley, H. (1970). Watershed areas contributing to runoff (pp. 12–26). IAHS publication

Dooge, J. C. (1957). The rational method for estimating flood peaks. Engineering, 184(1), 311–313.

Gabrielli, C., Morgenstern, U., Stewart, M. K., & McDonnell, J. J. (2018). Contrasting groundwater and streamflow ages at the Maimai

watershed. Water Resources Research, 54(6), 3937–3957. https://doi.org/10.1029/2017wr021825

Garbrecht, J., & Martz, L. W. (1997). The assignment of drainage direction over flat surfaces in raster digital elevation models. Journal of

Hydrology, 193(1–4), 204–213. https://doi.org/10.1016/s0022-1694(96)03138-1

Gleeson, T., Novakowski, K., & Kyser, T. K. (2009). Extremely rapid and localized recharge to a fractured rock aquifer. Journal of Hydrology,

376(3–4), 496–509. https://doi.org/10.1016/j.jhydrol.2009.07.056

Hale, V. C., & McDonnell, J. J. (2016). Effect of bedrock permeability on stream base flow mean transit time scaling relations: 1. A multiscale catchment intercomparison. Water Resources Research, 52, 1358–1374. https://doi.org/10.1002/2014wr016124

Haria, A. H., & Shand, P. (2004). Evidence for deep sub-surface flow routing in forested upland Wales: Implications for contaminant

transport and stream flow generation. Hydrology and Earth System Sciences Discussions, 8(3), 334–344. https://doi.org/10.5194/

hess-8-334-2004

Haria, A. H., & Shand, P. (2006). Near-stream soil water–groundwater coupling in the headwaters of the Afon Hafren, Wales: Implications

for surface water quality. Journal of Hydrology, 331(3–4), 567–579. https://doi.org/10.1016/j.jhydrol.2006.06.004

17 of 18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Water Resources Research

10.1029/2021WR029888

Hewlett, J. D., & Hibbert, A. R. (1967). Factors affecting the response of small watersheds to precipitation in humid areas. In W. E. Sopper,

& W. H. Lull (Eds.), International Symposium on Forest hydrology (pp. 275–290). New York: Pergamon.

Hinton, M., Schiff, S., & English, M. (1993). Physical properties governing groundwater flow in a glacial till catchment. Journal of Hydrology, 142(1–4), 229–249. https://doi.org/10.1016/0022-1694(93)90012-x

Imamoto, H., Ishigaki, T., & Ohtoshi, K. (1984). Influence factors on refuge of people in the Nagasaki flood disaster in July 1982. Japan

Society for Natural Disaster Science, 3(1), 22–33. (in Japanese with English summary).

Inaoka, J., Kosugi, K., Masaoka, N., Itokazu, T., & Nakamura, K. (2020). Effects of geological structures on rainfall-runoff responses in

headwater catchments in a sedimentary rock mountain. Hydrological Processes, 34(26), 5567–5579. https://doi.org/10.1002/hyp.13972

Japanese Geotechnical Society. (1979). Engineering properties of weathered granite and granitic soils and their application. Library of

Soil Mechanics and Foundation Engineering, 16. 316. (in Japanese (the title is a tentative translation by the authors from the original)).

Jitousono, T., & Haruyama, M. (1985). Quantification of the soil and water conservation function of forest II. Analysis of hydrological data

observed in 1983. Research bulletin of the Kagoshima University forests, 13, 159–177. (in Japanese with English summary).

Katsura, S., Kosugi, K., Mizutani, T., & Mizuyama, T. (2009). Hydraulic properties of variously weathered granitic bedrock in headwater

catchments. Vadose Zone Journal, 8(3), 557–573. https://doi.org/10.2136/vzj2008.0142

Katsura, S., Kosugi, K., Yamamoto, N., & Mizuyama, T. (2006). Saturated and unsaturated hydraulic conductivities and water retention

characteristics of weathered granitic bedrock. Vadose Zone Journal, 5(1), 35–47. https://doi.org/10.2136/vzj2005.0040

Komatsu, Y., & Onda, Y. (1996). Spatial variation in specific discharge of base flow in a small catchments, Oe-yama region, weatern Japan.

Journal of Japan Society of Hydrology and Water Resources, 9(6), 489–497. https://doi.org/10.3178/jjshwr.9.489

Kosugi, K., Fujimoto, M., Katsura, S., Kato, H., Sando, Y., & Mizuyama, T. (2011). Localized bedrock aquifer distribution explains discharge

from a headwater catchment. Water Resources Research, 47. https://doi.org/10.1029/2010wr009884

Kosugi, K., Katsura, S., Katsuyama, M., & Mizuyama, T. (2006). Water flow processes in weathered granitic bedrock and their effects on

runoff generation in a small headwater catchment. Water Resources Research, 42. https://doi.org/10.1029/2005wr004275

Kosugi, K., Katsura, S., Mizuyama, T., Okunaka, S., & Mizutani, T. (2008). Anomalous behavior of soil mantle groundwater demonstrates the major effects of bedrock groundwater on surface hydrological processes. Water Resources Research, 44. https://doi.

org/10.1029/2006wr005859

Kosugi, Y., & Katsuyama, M. (2007). Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water

budget methods. Journal of Hydrology, 334(3–4), 305–311. https://doi.org/10.1016/j.jhydrol.2006.05.025

Kosugi, Y., Takanashi, S., Tanaka, H., Ohkubo, S., Tani, M., Yano, M., & Katayama, T. (2007). Evapotranspiration over a Japanese cypress

forest. I. Eddy covariance fluxes and surface conductance characteristics for 3years. Journal of Hydrology, 337(3–4), 269–283. https://

doi.org/10.1016/j.jhydrol.2007.01.039

Maréchal, J. C., Dewandel, B., & Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resources Research, 40(11). https://doi.org/10.1029/2004wr003137

Masaoka, N., Kosugi, K., Yamakawa, Y., & Tsutsumi, D. (2016). Processes of bedrock groundwater seepage and their effects on soil water

fluxes in a foot slope area. Journal of Hydrology, 535, 160–172. https://doi.org/10.1016/j.jhydrol.2016.01.081

Matsumoto, K., Kosugi, Y., Katsuyama, M., Tani, M., Ohkubo, S., & Takanashi, S. (2011). Estimation of bedrock infiltration on a weathered

granitic mountain covered by Japanese cypress forest using water-budget and eddy covariance methods. International Journal of Erosion Control Engineering, 4(1), 10–20. https://doi.org/10.13101/ijece.4.10

Olofsson, B. (1994). Flow of groundwater from soil to crystalline rock. Hydrogeology Journal, 2(3), 71–83. https://doi.org/10.1007/

s100400050052

Onda, Y., Komatsu, Y., Tsujimura, M., & Fujihara, J. (2001). The role of subsurface runoff through bedrock on storm flow generation.

Hydrological Processes, 15(10), 1693–1706. https://doi.org/10.1002/hyp.234

Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E., & Wondzell, S. M. (2012). Exploring changes in the spatial distribution of stream

baseflow generation during a seasonal recession. Water Resources Research, 48. https://doi.org/10.1029/2011wr011552

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., & McDonnell, J. J. (2017). Bedrock geology controls

on catchment storage, mixing, and release: A comparative analysis of 16 nested catchments. Hydrological Processes, 31(10), 1828–1845.

https://doi.org/10.1002/hyp.11134

Rinderer, M., McGlynn, B. L., & Van Meerveld, H. J. (2017). Groundwater similarity across a watershed derived from time-warped and

flow-corrected time series. Water Resources Research, 53, 3921–3940. https://doi.org/10.1002/2016wr019856

Salve, R., Rempe, D. M., & Dietrich, W. E. (2012). Rain, rock moisture dynamics, and the rapid response of perched groundwater in weathered, fractured argillite underlying a steep hillslope. Water Resources Research, 48. https://doi.org/10.1029/2012wr012583

Sophocleous, M. (2002). Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 10(1), 52–67.

https://doi.org/10.1007/s10040-001-0170-8

Tromp-van Meerveld, H. J., Peters, N. E., & McDonnell, J. J. (2007). Effect of bedrock permeability on subsurface stormflow and the water

balance of a trenched hillslope at the Panola Mountain Research Watershed, Georgia, USA. Hydrological Processes, 21(6), 750–769.

https://doi.org/10.1002/hyp.6265

Uchida, T., Asano, Y., Mizuyama, T., & McDonnell, J. J. (2004). Role of upslope soil pore pressure on lateral subsurface storm flow dynamics. Water Resources Research, 40(12). https://doi.org/10.1029/2003wr002139

Uchida, T., Asano, Y., Ohte, N., & Mizuyama, T. (2003a). Analysis of flowpath dynamics in a steep unchannelled hollow in the Tanakami

Mountains of Japan. Hydrological Processes, 17(2), 417–430. https://doi.org/10.1002/hyp.1133

Uchida, T., Asano, Y., Ohte, N., & Mizuyama, T. (2003b). Seepage area and rate of bedrock groundwater discharge at a granitic unchanneled hillslope. Water Resources Research, 39(1). https://doi.org/10.1029/2002wr001298

Uchida, T., Asano, Y., Onda, Y., & Miyata, S. (2005). Are headwaters just the sum of hillslopes? Hydrological Processes, 19(16), 3251–3261.

https://doi.org/10.1002/hyp.6004

Waddington, J., Roulet, N., & Hill, A. (1993). Runoff mechanisms in a forested groundwater discharge wetland. Journal of Hydrology,

147(1), 37–60. https://doi.org/10.1016/0022-1694(93)90074-j

Welch, L. A., & Allen, D. M. (2014). Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock

groundwater flow. Hydrogeology Journal, 22(5), 1003–1026. https://doi.org/10.1007/s10040-014-1121-5

Worthington, S. R., Davies, G. J., & Alexander, E. C., Jr (2016). Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160, 188–202. https://doi.org/10.1016/j.earscirev.2016.07.002

Yamakawa, Y., Kosugi, K., Katsura, S., Masaoka, N., & Mizuyama, T. (2012). Spatial and temporal monitoring of water content in weathered granitic bedrock using electrical resistivity imaging. Vadose Zone Journal, 11(1). https://doi.org/10.2136/vzj2011.0029

MASAOKA ET AL.

18 of 18

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る