リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Charge-loop current order and Z₃ nematicity mediated by bond order fluctuations in kagome metals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Charge-loop current order and Z₃ nematicity mediated by bond order fluctuations in kagome metals

Tazai, Rina Yamakawa, Youichi Kontani, Hiroshi 京都大学 DOI:10.1038/s41467-023-42952-6

2023.11.29

概要

Recent experiments on geometrically frustrated kagome metal AV₃Sb₅ (A = K, Rb, Cs) have revealed the emergence of the charge loop current (cLC) order near the bond order (BO) phase. However, the origin of the cLC and its interplay with other phases have been uncovered. Here, we propose a novel mechanism of the cLC state, by focusing on the BO phase common in kagome metals. The BO fluctuations in kagome metals, which emerges due to the Coulomb interaction and the electron-phonon coupling, mediate the odd-parity particle-hole condensation that gives rise to the topological current order. Furthermore, the predicted cLC+BO phase gives rise to the Z₃-nematic state in addition to the giant anomalous Hall effect. The present theory predicts the close relationship between the cLC, the BO, and the nematicity, which is significant to understand the cascade of quantum electron states in kagome metals. The present scenario provides a natural understanding.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

Methods

Self-energy due to BO fluctuations

To understand the BO+cLC phase diagram and the energy scale of

these orders accurately, we have to include the self-energy that

describes the quasiparticle properties. We calculate the on-site selfenergy due to BO fluctuations as

Σm ðϵn Þ =

T X

G 00 0 ðk + q,ϵn + ωl Þ

N k,q,m00 ,m000 m m

ð8Þ

8.

9.

10.

× Bmm,m00 m0 ðk,qÞ,

00

Bmm,m00 m0 ðk,qÞ = g qm m ðkÞg qm m ðkÞ  yvð1 + vχ g ðqÞÞ,

11.

ð9Þ

which is shown in Fig. 2d. Then, the Green function is given as

^ ÞÞ1 . The effect of thermal fluctuations

 Σðϵ

GðkÞ

= ðiϵn + μ  hðkÞ

described by the self-energy is essential to reproduce the

T-dependence of various physical quantities. Here, y = 1/2 when H

int

is given in Eq. (2). In the present numerical study, we calculate

χ g ðqÞ = χ 0g ðqÞ=ð1  vχ 0g ðqÞÞ and Σm(ϵn) in Eq. (8) self-consistently.

12.

13.

Kernel function of the DW equation

The kernel function due to BO fluctuations in Eq. (7) is given as

14.

0 0

lm

I llq ,mm ðk,pÞ =  g m

pk ðkÞyvð1 + vχ g ðk  pÞÞg kp ðp + qÞ

+ g llq ðkÞvg mm

q ðpÞ ,

ð10Þ

15.

16.

which is expressed in Fig. 3a and Supplementary Fig. 4a. The first term,

the MT term, is important when αBO ≲ 1, and its first term is the Fock

term. The second term, the Hartree term, vanishes when the eigenfunction ^f q ðkÞ is orthogonal to the BO form factor g^ q ðkÞ, like the cLC

Nature Communications | (2023)14:7845

17.

Ortiz, B. R. et al. New kagome prototype materials: discovery of

KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Materials 3,

094407 (2019).

Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a

superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

Yu, F. H. et al. Unusual competition of superconductivity and

charge-density-wave state in a compressed topological kagome

metal. Nat. Commun. 12, 3645 (2021).

Jiang, Y.-X. et al. Unconventional chiral charge order in kagome

superconductor KV3Sb5. Nat. Mater. 20, 1353 (2021).

Li, H. et al. Rotation symmetry breaking in the normal state of a

kagome superconductor KV3Sb5. Nat. Phys. 18, 265 (2022).

Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface

instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110,

126405 (2013).

Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at van Hove filling. Phys. Rev. B 87,

115135 (2013).

Wu, X. et al. Nature of unconventional pairing in the kagome

superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127,

177001 (2021).

Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in

the kagome metal AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127,

217601 (2021).

Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome

metals: saddle points and Landau theory. Phys. Rev. B 104,

035142 (2021).

Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at

Van Hove singularity on hexagonal lattices: Haldane-model phase

diagram and potential realization in the kagome metals AV3Sb5 (A =

K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic

density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8,

eabl4108 (2022).

Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with

no sign change in the kagome superconductor CsV3Sb5. Nat.

Commun. 14, 667 (2023).

Zhang, W. et al. Nodeless superconductivity in kagome metal

CsV3Sb5 with and without time reversal symmetry breaking. Nano

Lett. 23, 872 (2023).

Guguchia, Z. et al. Tunable nodal kagome superconductivity in

charge ordered RbV3Sb5. Nat. Commun. 14, 153 (2023).

Yu, L. et al. Evidence of a hidden flux phase in the topological

kagome metal CsV3Sb5. Preprint at https://arxiv.org/abs/

2107.10714.

Mielke, C. et al. Time-reversal symmetry-breaking charge order in a

kagome superconductor. Nature 602, 245 (2022).

Article

18. Khasanov, R. et al. Time-reversal symmetry broken by charge order

in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).

19. Xu, Y. et al. Universal three-state nematicity and magneto-optical

Kerr effect in the charge density waves in AV3Sb5 (A=Cs, Rb, K). Nat.

Phys. 18, 1470 (2022).

20. Guo, C. et al. Switchable chiral transport in charge-ordered Kagome

metal CsV3Sb5. Nature 611, 461 (2022).

21. Asaba, T. et al. Evidence for an odd-parity nematic phase above the

charge density wave transition in kagome metal CsV3Sb5. Nat. Phys.

Preprint at https://arxiv.org/abs/2309.16985.

22. Saykin, D. R. et al. High resolution polar Kerr effect studies of

CsV3Sb5: tests for time reversal symmetry breaking below the

charge order transition. Phys. Rev. Lett. 131, 016901 (2023).

23. Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological

kagome superconductor CsV3Sb5 with in-plane rotating magnetic

field. Nat. Commun. 12, 6727 (2021).

24. Haldane, F. D. M. Model for a quantum Hall effect without landau

levels: condensed-matter realization of the “parity anomaly". Phys.

Rev. Lett. 61, 2015 (1988).

25. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the

metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6,

eabb6003 (2020).

26. Yu, F. H. et al. Concurrence of anomalous Hall effect and charge

density wave in a superconducting topological kagome metal.

Phys. Rev. B 104, L041103 (2021).

27. Nie, L. et al. Charge-density-wave-driven electronic nematicity in a

kagome superconductor. Nature 604, 59 (2022).

28. Ni, S. et al. Anisotropic superconducting properties of kagome

metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).

29. Dong, J.-W., Wang, Z. & Zhou, S. Loop-current charge density wave

driven by long-range Coulomb repulsion on the kagome lattice.

Phys. Rev. B 107, 045127 (2023).

30. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M.

Loop currents in AV3Sb5 kagome metals: multipolar and toroidal

magnetic orders. Phys. Rev. B 106, 144504 (2022).

31. Grandi, F., Consiglio, A., Sentef, M. A., Thomale, R. & Kennes, D. M.

Theory of nematic charge orders in kagome metals. Phys. Rev. B

107, 155131 (2023).

32. Varma, C. M. Non-Fermi-liquid states and pairing instability of a

general model of copper oxide metals. Phys. Rev. B 55,

14554 (1997).

33. Nersesyan, A. A., Japaridze, G. I. & Kimeridze, I. G. Low-temperature

magnetic properties of a two-dimensional spin nematic state. J.

Phys. Condens. Matter 3, 3353 (1991).

34. Fradkin, E. & Kivelson, S. A. Ineluctable complexity. Nat. Phys. 8,

864 (2012).

35. Davis, J. C. S. & Lee, D.-H. Concepts relating magnetic interactions,

intertwined electronic orders, and strongly correlated superconductivity. Proc. Natl Acad. Sci. USA 110, 17623 (2013).

36. Onari, S. & Kontani, H. Self-consistent vertex correction analysis

for iron-based superconductors: mechanism of coulomb

interaction-driven orbital fluctuations. Phys. Rev. Lett. 109,

137001 (2012).

37. Tsuchiizu, M., Ohno, Y., Onari, S. & Kontani, H. Orbital nematic

instability in the two-orbital Hubbard model: renormalization-group

+ constrained RPA analysis. Phys. Rev. Lett. 111, 057003 (2013).

38. Tsuchiizu, M., Kawaguchi, K., Yamakawa, Y. & Kontani, H. Multistage

electronic nematic transitions in cuprate superconductors: a

functional-renormalization-group analysis. Phys. Rev. B 97,

165131 (2018).

39. Yamakawa, Y. & Kontani, H. Spin-fluctuation-driven nematic

charge-density wave in cuprate superconductors: impact of

Aslamazov-Larkin vertex corrections. Phys. Rev. Lett. 114,

257001 (2015).

Nature Communications | (2023)14:7845

https://doi.org/10.1038/s41467-023-42952-6

40. Yamakawa, Y., Onari, S. & Kontani, H. Nematicity and magnetism in

FeSe and other families of Fe-based superconductors. Phys. Rev. X

6, 021032 (2016).

41. Onari, S., Yamakawa, Y. & Kontani, H. Sign-reversing orbital polarization in the nematic phase of FeSe due to the C2 symmetry

breaking in the self-energy. Phys. Rev. Lett. 116, 227001 (2016).

42. Chubukov, A. V., Khodas, M. & Fernandes, R. M. Magnetism,

superconductivity, and spontaneous orbital order in iron-based

superconductors: which comes first and why? Phys. Rev. X 6,

041045 (2016).

43. Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial

order in quantum materials: nematicity and beyond. Annu. Rev.

Condens. Matter Phys. 10, 133 (2019).

44. Onari, S. & Kontani, H. SU(4) Valley+spin fluctuation interference

mechanism for nematic order in magic-angle twisted bilayer graphene: the impact of vertex corrections. Phys. Rev. Lett. 128,

066401 (2022).

45. Kontani, H., Tazai, R., Yamakawa, Y. & Onari, S. Unconventional

density waves and superconductivities in Fe-based superconductors and other strongly correlated electron systems. Adv.

Phys. 70, 355 (2021).

46. Zhou, S. & Wang, Z. Chern Fermi pocket, topological pair density

wave, and charge-4e and charge-6e superconductivity in kagome

superconductors. Nat. Commun. 13, 7288 (2022).

47. Wu, Y.-M., Thomale, R. & Raghu, S. Sublattice interference promotes pair density wave order in kagome metals. Phys. Rev. B 108,

L081117 (2023).

48. Pan, Z., Lu, C., Yang, F. & Wu, C. Frustrated superconductivity and

charge-6e ordering. Preprint at https://arxiv.org/abs/2209.13745.

49. Chen, Q., Chen, D., Schnelle, W., Felser, C. & Gaulin, B. D. Charge

density wave order and fluctuations above TCDW and below superconducting Tc in the kagome metal CsV3Sb5. Phys. Rev. Lett. 129,

056401 (2022).

50. Yang, K. et al. Charge fluctuations above TCDW revealed by glasslike

thermal. Phys. Rev. B 107, 184506 (2023).

51. Tazai, R., Matsubara, S., Yamakawa, Y., Onari, S. & Kontani, H. A

rigorous formalism of unconventional symmetry breaking in fermi

liquid theory and its application to nematicity in FeSe. Phys. Rev. B

107, 035137 (2023).

52. Guo, H.-M. & Franz, M. Topological insulator on the kagome lattice.

Phys. Rev. B 80, 113102 (2009).

53. Hu, Y. et al. Rich nature of Van Hove singularities in Kagome

superconductor CsV3Sb5. Nature 13, 2220 (2022).

54. Luo, Y. et al. Distinct band reconstructions in kagome superconductor CsV3Sb5. Phys. Rev. B 105, L241111 (2022).

55. Nakayama, K. et al. Multiple energy scales and anisotropic energy

gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).

56. Liu, Z. et al. Charge-density-wave-induced bands renormalization

and energy gaps in a kagome superconductor RbV3Sb5. Phys. Rev.

X 11, 041010 (2021).

57. Wang, Z. et al. Distinctive momentum dependent charge-densitywave gap observed in CsV3Sb5 superconductor with topological

Kagome lattice. Preprint at https://arxiv.org/abs/2104.05556.

58. Tazai, R., Yamakawa, Y., Tsuchiizu, M. & Kontani, H. d- and p-wave

Quantum liquid crystal orders in cuprate superconductors,

κ-(BEDT-TTF)2X, and coupled chain Hubbard models: functionalrenormalization-group analysis. J. Phys. Soc. Jpn. 90, 111012 (2021).

59. Kontani, H. & Onari, S. Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital HubbardHolstein model. Phys. Rev. Lett. 104, 157001 (2010).

60. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev.

Lett. 127, 046401 (2021).

Article

61. Li, H. et al. Observation of unconventional charge density wave

without acoustic phonon anomaly in kagome superconductors

AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

62. Wang, Z. X. et al. Unconventional charge density wave and photoinduced lattice symmetry change in the kagome metal CsV3Sb5

probed by time-resolved spectroscopy. Phys. Rev. B 104,

165110 (2021).

63. Moriya, T. & Ueda, K. Spin fluctuations and high temperature

superconductivity. Adv. Phys. 49, 555 (2000).

64. Vilk, Y. & Tremblay, A.-M. S. Non-perturbative many-body approach

to the Hubbard model and single-particle pseudogap. J. Phys. I 7,

1309 (1997).

65. Kontani, H. Anomalous transport phenomena in Fermi liquids

with strong magnetic fluctuations. Rep. Prog. Phys. 71,

026501 (2008).

66. Tazai, R., Yamakawa, Y. & Kontani, H. Emergence of charge loop

current in the geometrically frustrated Hubbard model: a functional

renormalization group study. Phys. Rev. B 103, L161112 (2021).

67. Kino, H. & Kontani, H. Phase diagram of superconductivity on the

anisotropic triangular lattice Hubbard model: an effective model of

κ-(BEDT-TTF) salts. J. Phys. Soc. Jpn. 67, 3691 (1998).

68. Kitatani, M., Tsuji, N. & Aoki, H. FLEX+DMFT approach to the d-wave

superconducting phase diagram of the two-dimensional Hubbard

model, Phys. Rev. B 92, 085104 (2015).

69. Xing, Y. et al. Optical manipulation of the charge density wave state

in RbV3Sb5. Preprint at https://arxiv.org/abs/2308.04128.

70. Feng, X., Jiang, K., Wang, Z. & Hu, J. Chiral flux phase in the Kagome

superconductor AV3Sb5. Sci. Bull. 66, 1384 (2021).

71. Kontani, H., Tanaka, T. & Yamada, K. Intrinsic anomalous Hall effect

in ferromagnetic metals studied by the multi-d-orbital tight-binding

model. Phys. Rev. B 75, 184416 (2007).

72. Kontani, H., Tanaka, T., Hirashima, D. S., Yamada, K. & Inoue, J. Giant

orbital Hall effect in transition metals: origin of large spin and

anomalous Hall effects. Phys. Rev. Lett. 102, 016601 (2009).

73. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P.

Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

74. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat.

Phys. 8, 158 (2012).

75. Scammell, H. D., Ingham, J., Li, T. & Sushkov, O. P. Chiral excitonic

order from twofold van Hove singularities in kagome metals. Nat.

Commun. 14, 605 (2023).

76. Guo, C. et al. Correlated order at the tipping point in the kagome

metal CsV3Sb5. Preprint at https://arxiv.org/abs/2304.00972.

77. Tazai, R., Yamakawa, Y. & Kontani, H. Drastic magnetic-fieldinduced chiral current order and emergent current-bond-field

interplay in kagome metal AV3Sb5 (A=Cs,Rb,K). Proc. Natl. Acad. Sci.

Preprint at https://arxiv.org/abs/2303.00623.

78. Arachchige, H. W. S. et al. Charge density wave in kagome lattice

intermetallic ScV6Sn6. Phys. Rev. Lett. 129, 216402 (2022).

79. Hu, H. et al. Kagome materials I: SG 191, ScV6Sn6. Flat phonon soft

modes and unconventional CDW formation: microscopic and

effective theory. Preprint at https://arxiv.org/abs/2305.15469.

80. Korshunov, A. et al. Softening of a flat phonon mode in the kagome

ScV6Sn6. Nat. Commun. 14, 6646 (2023).

81. Guguchia, Z. et al. Hidden magnetism uncovered in charge ordered

bilayer kagome material ScV6Sn6. Preprint at https://arxiv.org/abs/

2304.06436.

Nature Communications | (2023)14:7845

https://doi.org/10.1038/s41467-023-42952-6

82. Yang, H. et al. Superconductivity and orbital-selective nematic

order in a new titanium-based kagome metal CsTi3Bi5. Preprint at

https://arxiv.org/abs/2211.12264.

83. Li, H. et al. Electronic nematicity in the absence of charge density

waves in a new titanium-based kagome metal. Nat. Phys. https://

doi.org/10.1038/s41567-023-02176-3 (2023).

84. Huang, J., Yamakawa, Y., Tazai, R. & Kontani, H. Odd-parity intraunit-cell bond-order and induced nematicity in kagome metal

CsTi3Bi5 driven by quantum interference mechanism. Preprint at

https://arxiv.org/abs/2305.18093.

Acknowledgements

We are grateful to S. Onari, A. Ogawa, Y. Matsuda, T. Shibauchi, K.

Hashimoto, and T. Asaba for fruitful discussions. This study has been

supported by Grants-in-Aid for Scientific Research from MEXT of Japan

(JP20K03858, JP20K22328, JP22K14003), and by the Quantum Liquid

Crystal No. JP19H05825 KAKENHI on Innovative Areas from JSPS of Japan.

Author contributions

R.T. executed the calculations in discussion with Y.Y and H.K., and R.T.

and H.K. wrote the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-42952-6.

Correspondence and requests for materials should be addressed to

Rina Tazai.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る