リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Supercooled Jahn-Teller ice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Supercooled Jahn-Teller ice

Mitsumoto, Kota Hotta, Chisa Yoshino, Hajime 神戸大学

2022.08.29

概要

When the spins on the frustrated pyrochlore lattice obey the celebrated 2-in-2-out ice rule, they stay in a correlated disordered phase and break the third law of thermodynamics. Similarly, if the atomic ions on the pyrochlore lattice move in and outward of the tetrahedra, they may obey a constraint resembling the ice rule. We discover that a model for pyrochlore molybdates A(2)Mo(2)O(7) (A = Y, Dy, Tb) exhibits a "supercooled ice " state of the displacement degrees of freedom of Mo4+ ions, when we take account of the Jahn-Teller (JT) effect. The JT effect occurs when the lattice distortions reduce the symmetry of the local crystal field, resulting in the orbital-energy splitting that causes the local energy gain. Unlike the standard JT effect that leads to periodic long-range ordering, the displacements of Mo4+ ions are disordered following the icelike rule. We microscopically derive a model that describes this situation by having the 2nd-and 3rd-neighbor interactions between in-out lattice displacements comparably as strong as the nearest-neighbor interactions of standard ice. There, the well-known nearly flat energy landscape of the ice state is altered to a metastable highly quasidegenerate icelike liquid state coexisting with a crystalline-like ground state. Our Monte Carlo simulations show that this liquid remains remarkably stable down to low temperatures by avoiding the putative first-order transition. The relaxation in the supercooled JT ice state exhibits glassy dynamics with a plateau structure. They fit the feature of a "good glass former " very often found in molecular liquids but that has never been observed in material solids. The high glass-forming ability of the interacting lattice degrees of freedom will play a key role in the spin-glass transition of the material.

この論文で使われている画像

参考文献

[1] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys. 88, 3113 (2000).

[2] T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A 40, 1045 (1989).

[3] P. G. Debenedetti and F. H. Stillinger, Supercooled liquids and the glass transition, Nature (London) 410, 259 (2001).

[4] G. Biroli and J. P. Bouchaud, The random first-order transition theory of glasses: A critical assessment, in Structural Glasses and Supercooled Liquids: Theory, Experiment and Applications, edited by P. G. Wolynes and V. Lubchenko (Wiley and Sons, Hoboken, New Jersey, USA, 2012).

[5] G. Parisi, P. Urbani, and F. Zamponi, Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge University Press, Cambridge, England, 2020).

[6] W. Kauzmann, The glassy state and the behaviour of liquids at low temperature, Chem. Rev. 43, 219 (1948).

[7] J. A. Mydosh, Spin Glasses: An Experimental Introduction(Taylor and Francis, Thames, Oxfordshire, UK, 1993).

[8] T. E. Saunders and J. T. Chalker, Spin Freezing in Geometri- cally Frustrated Antiferromagnets with Weak Disorder, Phys. Rev. Lett. 98, 157201 (2007).

[9] H. Shinaoka, Y. Tomita, and Y. Motome, Spin-Glass Transi- tion in Bond-Disordered Heisenberg Antiferromagnets Coupled with Local Lattice Distortions on a Pyrochlore Lattice, Phys. Rev. Lett. 107, 047204 (2011).

[10] G. Tarjus, An overview of the theories of the glass transition, Dynamical Heterogeneities Glasses, Colloids, Granular Media 150, 39 (2011).

[11] A. Cavagna, Supercooled liquids for pedestrians, Phys. Rep.476, 51 (2009).

[12] S. T. Bramwell and M. J. Harris, The history of spin ice,J. Phys.: Condens. Matter 32, 374010 (2020).

[13] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Zero-point entropy in ‘spin ice’, Nature (London) 399, 333 (1999).

[14] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Magnetic pyrochlore oxides, Rev. Mod. Phys. 82, 53 (2010).

[15] L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, J. Am. Chem. Soc. 57, 2680 (1935).

[16] M. Hermele, M. P. A. Fisher, and L. Balents, Pyrochlore photons: The U (1) spin liquid in a S 1 three-dimensional frustrated magnet, Phys. Rev. B 69, 064404 (2004).

[17] S. B. Lee, S. Onoda, and L. Balents, Generic quantum spin ice, Phys. Rev. B 86, 104412 (2012).

[18] P. M. M. Thygesen, J. A. M. Paddison, R. Zhang, K. A. Beyer,K. W. Chapman, H. Y. Playford, M. G. Tucker, D. A. Keen,M. A. Hayward, and A. L. Goodwin, Orbital Dimer Model for the Spin-Glass State in Y2Mo2O7, Phys. Rev. Lett. 118, 067201 (2017).

[19] A. Smerald and G. Jackeli, Giant Magnetoelastic-Coupling Driven Spin-Lattice Liquid State in Molybdate Pyrochlores, Phys. Rev. Lett. 122, 227202 (2019).

[20] K. Mitsumoto, C. Hotta, and H. Yoshino, Spin-Orbital Glass Transition in a Model of a Frustrated Pyrochlore Magnet without Quenched Disorder, Phys. Rev. Lett. 124, 087201 (2020).

[21] H. A. Jahn and E. Teller, Stability of polyatomic molecules in degenerate electronic states I: Orbital degeneracy, Proc. R. Soc. 161, 220 (1937).

[22] M. C. M. O’Brien and C. C. Chancey, The Jahn-Teller ef- fect: An introduction and current review, Am. J. Phys. 61, 688 (1993).

[23] J. B. Goodenough, Jahn-Teller phenomena in solids. Annu. Rev. Mater. Sci. 28, 1 (1998).

[24] F. Kagawa, T. Sato, K. Miyagawa, K. Kanoda, Y. Tokura, K. Kobayashi, R. Kumai, and Y. Murakami, Charge-cluster glass in an organic conductor, Nat. Phys. 9, 419 (2013).

[25] J. G. Kirkwood, Crystallization as a cooperative phenomenon, in Phase Transformations in Solids, edited by R. Smoluchowski,J. E. Mayer, and W. A. Weyl (Wiley and Sons, 1951).

[26] W. Klein and H. L. Frisch, Instability in the infinite dimensional hard sphere fluid, J. Chem. Phys. 84, 968 (1986).

[27] L. F. Cugliandolo, L. Foini, and M. Tarzia, Mean-field phase diagram and spin-glass phase of the dipolar kagome Ising anti- ferromagnet, Phys. Rev.B 101, 144413 (2020).

[28] S. Franz, M. Mézard, F. Ricci-Tersenghi, M. Weigt, and R. Zecchina, A ferromagnet with a glass transition, Europhys. Lett. 55, 465 (2001).

[29] H. Yoshino, Disorder-free spin glass transitions and jamming in exactly solvable mean-field models, SciPost Phys. 4, 040 (2018).

[30] J. E. Greedan, M. Sato, X. Yan, and F. S. Razavi, Spin-glass- like behavior in Y2Mo2O7, a concentrated, crystalline system with negligible apparent disorder, Solid State Commun. 59, 895 (1986).

[31] B. D. Gaulin, J. N. Reimers, T. E. Mason, J. E. Greedan, and Z. Tun, Spin Freezing in the Geometrically Frustrated Pyrochlore Antiferromagnet Tb2Mo2O7, Phys. Rev. Lett. 69, 3244 (1992).

[32] S. R. Dunsiger, R. F. Kiefl, K. H. Chow, B. D. Gaulin, M. J. P. Gingras, J. E. Greedan, A. Keren, K. Kojima, G. M. Luke,W. A. MacFarlane, N. P. Raju, J. E. Sonier, Y. J. Uemura, andW. D. Wu, Muon spin relaxation investigation of the spin dy- namics of geometrically frustrated antiferromagnets Y2Mo2O7 and Tb2Mo2O7, Phys. Rev. B 54, 9019 (1996).

[33] M. J. P. Gingras, C. V. Stager, N. P. Raju, B. D. Gaulin, and J. E. Greedan, Static Critical Behavior of the Spin-Freezing Transition in the Geometrically Frustrated Pyrochlore Antifer- romagnet Y2Mo2O7, Phys. Rev. Lett. 78, 947 (1997).

[34] J. S. Gardner, B. D. Gaulin, S.-H. Lee, C. Broholm, N. P. Raju, and J. E. Greedan, Glassy Statics and Dynamics in the Chem- ically Ordered Pyrochlore Antiferromagnet Y2Mo2O7, Phys. Rev. Lett. 83, 211 (1999).

[35] N. Hanasaki, K. Watanabe, T. Ohtsuka, I. Kézsmárki, S. Iguchi,S. Miyasaka, and Y. Tokura, Nature of the Transition between a Ferromagnetic Metal and a Spin-Glass Insulator in Pyrochlore Molybdates, Phys. Rev. Lett. 99, 086401 (2007).

[36] J. N. Reimers, J. E. Greedan, and M Sato, The crystal structure of the spin-glass pyrochlore, Y2Mo2O7, J. Solid State Chem. 72, 390 (1988).

[37] I. V. Solovyev, Effects of crystal structure and on-site Coulomb interactions on the electronic and magnetic structure of A2Mo2O7(A Y, Gd, and Nd) pyrochlores, Phys. Rev. B 67, 174406 (2003).

[38] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A 32, 751 (1976).

[39] C. H. Booth, J. S. Gardner, G. H. Kwei, R. H. Heffner, F. Bridges, and M. A. Subramanian, Local lattice disorder in the geometrically frustrated spin-glass pyrochlore Y2Mo2O7, Phys. Rev. B 62, R755 (2000).

[40] A. Ikeda and H. Kawamura, Ordering of the pyrochlore Ising model with the long-range RKKY interaction, J. Phys. Soc. Jpn. 77, 073707 (2008).

[41] J. G. Rau and M. J. P. Gingras, Spin slush in an extended spin ice model, Nat. Commun. 7, 12234 (2016).

[42] M. Udagawa, L. D. C. Jaubert, C. Castelnovo, and R. Moessner, Out-of-equilibrium dynamics and extended textures of topolog- ical defects in spin ice, Phys. Rev. B 94, 104416 (2016).

[43] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevResearch.4.033157 which is a movie of the configuration in supercooled Jahn-Teller ice with time steps corresponding to the Monte Carlo step.

[44] C. A. Angell, Relaxation in liquids, polymers and plastic crys- tals: Strong/fragile patterns and problems, J. Non-Cryst. Solids 131-133, 13 (1991).

[45] R. G. Melko, B. C. den Hertog, and M. J. P. Gingras, Long- Range Order at Low Temperatures in Dipolar Spin Ice, Phys. Rev. Lett. 87, 067203 (2001).

[46] H. Fukazawa, R. G. Melko, R. Higashinaka, Y. Maeno, andM. J. P. Gingras, Magnetic anisotropy of the spin-ice compound Dy2Ti2O7, Phys. Rev.B 65, 054410 (2002).

[47] S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara,J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, and Julia Y. Chan, Metallic Spin-Liquid Behavior of the Geomet- rically Frustrated Kondo Lattice Pr2Ir2O7, Phys. Rev. Lett. 96, 087204 (2006).

[48] M. Isobe and Y. Ueda, Observation of phase transition from metal to spin-singlet insulator in MgTi2O4 with S 1/2 py- rochlore lattice, J. Phys. Soc. Jpn. 71, 1848 (2002).

[49] M. Schmidt, W. Ratcliff, P. G. Radaelli, K. Refson, N. M. Harrison, and S. W. Cheong, Spin Singlet Formation in MgTi2O4: Evidence of a Helical Dimerization Pattern, Phys. Rev. Lett. 92, 056402 (2004).

[50] S. Torigoe, T. Hattori, K. Kodama, T. Honda, H. Sagayama, K. Ikeda, T. Otomo, H. Nitani, H. Abe, H. Murakawa, H. Sakai, and N. Hanasaki, Nanoscale ice-type structural fluctuation in spinel titanates, Phys. Rev.B 98, 134443 (2018).

[51] L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S. Knight,A. Harrison, J. P. Attfield, and B. D. Gaulin, From Spin Glass to Quantum Spin Liquid Ground States in Molybdate Pyrochlores, Phys. Rev. Lett. 113, 117201 (2014).

[52] E. H. Lieb, Exact Solution of the Problem of the Entropy of Two-Dimensional Ice, Phys. Rev. Lett. 18, 692 (1967).

[53] J. F. Nagle, Lattice statistics of hydrogen bonded crystals. I. The residual entropy of ice, J. Math. Phys. 7, 1484 (1966).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る