リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hamiltonian of a flux qubit-LC oscillator circuit in the deep–strong-coupling regime

Yoshihara, Fumiki Ashhab, Sahel Fuse, Tomoko Bamba, Motoaki Semba, Kouichi 京都大学 DOI:10.1038/s41598-022-10203-1

2022.04.26

概要

We derive the Hamiltonian of a superconducting circuit that comprises a single-Josephson-junction flux qubit inductively coupled to an LC oscillator, and we compare the derived circuit Hamiltonian with the quantum Rabi Hamiltonian, which describes a two-level system coupled to a harmonic oscillator. We show that there is a simple, intuitive correspondence between the circuit Hamiltonian and the quantum Rabi Hamiltonian. While there is an overall shift of the entire spectrum, the energy level structure of the circuit Hamiltonian up to the seventh excited states can still be fitted well by the quantum Rabi Hamiltonian even in the case where the coupling strength is larger than the frequencies of the qubit and the oscillator, i.e., when the qubit-oscillator circuit is in the deep–strong-coupling regime. We also show that although the circuit Hamiltonian can be transformed via a unitary transformation to a Hamiltonian containing a capacitive coupling term, the resulting circuit Hamiltonian cannot be approximated by the variant of the quantum Rabi Hamiltonian that is obtained using an analogous procedure for mapping the circuit variables onto Pauli and harmonic oscillator operators, even for relatively weak coupling. This difference between the flux and charge gauges follows from the properties of the qubit Hamiltonian eigenstates.

この論文で使われている画像

参考文献

1. Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature

398, 786 (1999).

2. Vool, U. & Devoret, M. Introduction to quantum electromagnetic circuits. Int. J. Circuit Theory Appl. 45, 897 (2017).

3. Nakamura, Y., Chen, C. D. & Tsai, J. S. Spectroscopy of Energy-Level Splitting between Two Macroscopic Quantum States of Charge

Coherently Superposed by Josephson Coupling. Phys. Rev. Lett. 79, 2328 (1997).

4. Orlando, T. P. et al. Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999).

5. Vion, D. et al. Manipulating the Quantum State of an Electrical Circuit. Science 296, 886 (2002).

6. Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi Oscillations in a Large Josephson-Junction Qubit. Phys. Rev. Lett. 89,

117901 (2002).

7. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

8. Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823 (2003).

9. Chiorescu, I. et al. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 431, 159 (2004).

10. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

11. Niskanen, A. O., Harrabi, K., Yoshihara, F., Nakamura, Y. & Tsai, J. S. Spectroscopy of three strongly coupled flux qubits. Phys. Rev.

B 74, 220503(R) (2006).

12. Niemczyk, T. et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772 (2010).

13. Forn-Diaz, P. et al. Observation of the Bloch-Siegert shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime. Phys.

Rev. Lett. 105, 237001 (2010).

14. Yoshihara, F. et al. Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys. 13, 44 (2017).

15. Yoshihara, F. et al. Characteristic spectra of circuit quantum electrodynamics systems from the ultrastrong- to the deep-strongcoupling regime. Phys. Rev. A 95, 053824 (2017).

Scientific Reports |

(2022) 12:6764 |

https://doi.org/10.1038/s41598-022-10203-1

11

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

16. Yoshihara, F. et al. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime. Phys. Rev.

Lett. 120, 183601 (2018).

17. Rabi, I. I. Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 51, 652 (1937).

18. Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser.

Proc. IEEE 51, 89 (1963).

19. Braak, D. Integrability of the Rabi Model. Phys. Rev. Lett. 107, 100401 (2011).

20. Bourassa, J. et al. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys. Rev. A 80, 032109 (2009).

21. Peropadre, B., Zueco, D., Porras, D. & García-Ripoll, J. J. Nonequilibrium and Nonperturbative Dynamics of Ultrastrong Coupling

in Open Lines. Phys. Rev. Lett. 111, 243602 (2013).

22. Smith, W. C. et al. Quantization of inductively shunted superconducting circuits. Phys. Rev. B 94, 144507 (2016).

23. Manucharyan, V. E., Baksic, A. & Ciuti, C. Resilience of the quantum Rabi model in circuit QED. J. Phys. A: Math. Theor. 50, 294001

(2017).

24. De Bernardis, D., Pilar, P., Jaako, T., De Liberato, S. & Rabl, P. Breakdown of gauge invariance in ultrastrong-coupling cavity QED.

Phys. Rev. A 98, 053819 (2018).

25. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent Quantum Dynamics of a Superconducting Flux Qubit.

Science 299, 1869 (2003).

26. Robertson, T. L. et al. Quantum theory of three-junction flux qubit with non-negligible loop inductance: Towards scalability. Phys.

Rev. B 73, 174526 (2006).

27. Peltonen, J. et al. Hybrid rf SQUID qubit based on high kinetic inductance. Sci. Rep. 8, 1 (2018).

28. Hazard, T. M. et al. Nanowire Superinductance Fluxonium Qubit. Phys. Rev. Lett. 122, 010504 (2019).

29. Grünhaupt, L. et al. Granular aluminium as a superconducting material for high-impedance quantum circuits. Nat. Mater. 18, 816

(2019).

30. V. E. Manucharyan, J. Koch, L. I. Glazman, & M. H. Devoret, Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets, Science

326, 113 ( 2009)

31. Consani, G. & Warburton, P. A. Effective Hamiltonians for interacting superconducting qubits: local basis reduction and the

Schrieffer-Wolff transformation. New J. Phys. 22, 053040 (2020).

32. Stokes, A. & Nazir, A. Gauge ambiguities imply Jaynes-Cummings physics remains valid in ultrastrong coupling QED. Nat. Commun. 10, 1 (2019).

33. Roth, M., Hassler, F. & DiVincenzo, D. P. Optimal gauge for the multimode Rabi model in circuit QED. Phys. Rev. Res. 1, 033128

(2019).

34. Di Stefano, O. et al. Resolution of gauge ambiguities in ultrastrong-coupling cavity quantum electrodynamics. Nat. Phys. 15, 803

(2019).

35. Johansson, J. R., Nation, P. D. & Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comp. Phys.

Commun. 184, 1234 (2013).

ˆ circ up to the seventh excited state, (ii) gauge transformation, (iii) energy shifts

36. See Supplementary Information for (i) fitting of H

up to second order in perturbation theory, (iv) matrix elements of the charge and flux operators.

37. Ashhab, S. & Nori, F. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical

states. Phys. Rev. A 81, 042311 (2010).

Acknowledgements

We are grateful to M. Devoret for valuable discussions. This work was supported by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) (No. JP19H01831 and JP19K03693),

Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology

(PRESTO) (Grant No. JPMJPR1767), JST Core Research for Evolutionary Science and Technology (CREST)

(Grant No. JPMJCR1775), and MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) Grant Number

JPMXS0120319794.

Author contributions

F.Y. conceived the main idea of the paper. F.Y., S.A., and M.B. constructed equations of the paper. F.Y., S.A., T.F.,

and M.B. conducted numerical calculations. F.Y. wrote the manuscript with feedback from all authors. F.Y. and

K.S. supervised the project.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​10203-1.

Correspondence and requests for materials should be addressed to F.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

Vol:.(1234567890)

(2022) 12:6764 |

https://doi.org/10.1038/s41598-022-10203-1

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る