リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Negative string tension of higher-charge Schwinger model via digital quantum simulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Negative string tension of higher-charge Schwinger model via digital quantum simulation

Honda, Masazumi Itou, Etsuko Kikuchi, Yuta Tanizaki, Yuya 京都大学 DOI:10.1093/ptep/ptac007

2022.03

概要

We study some properties of generalized global symmetry for the charge-q Schwinger model in the Hamiltonian formalism, which is the (1 + 1)-dimensional quantum electrodynamics with a charge-q Dirac fermion. This model has the ℤq 1-form symmetry, which is a remnant of the electric U(1) 1-form symmetry in the pure Maxwell theory. It is known that if we put the theory on closed space, then the Hilbert space is decomposed into q distinct sectors, called universes and some states with higher energy density do not decay to the ground state due to the selection rule of the 1-form symmetry. Even with open boundaries, we can observe the stability of such states by seeing a negative string tension behavior, meaning that opposite charges repel with each other. In order to see negative string tensions, the vacuum angle θ has to be large enough and the standard path-integral Monte Carlo method suffers from the sign problem. We develop a method based on the adiabatic state preparation to see this feature with digital quantum simulation and confirm it using a classical simulator of quantum devices. Especially, we measure local energy density and see how it jumps between inside and outside of insertion of the probe charges. We explicitly see that the energy density inside is lower than the outside one. This is a clear signature of the negative string tension.

この論文で使われている画像

参考文献

[1] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

[2] S. P. Jordan, K. S. M. Lee, and J. Preskill, Science 336, 1130 (2012) [arXiv:1111.3633 [quant-ph]]

[Search inSPIRE].

[3] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum Inform. Comput. 14, 1014 (2014)

[arXiv:1112.4833 [hep-th]] [Search inSPIRE].

[4] Jordan,Lee, and J. Preskill; arXiv:1404.7115 [hep-th] [Search inSPIRE].

[5] L. Garcia-Alvarez, J. Casanova, A. Mezzacapo, I. L. Egusquiza, L. Lamata, G. Romero, and E.

Solano, Phys. Rev. Lett. 114, 070502 (2015) [arXiv:1404.2868 [quant-ph]] [Search inSPIRE].

[6] U.-J. Wiese, Nucl. Phys. A 931, 246 (2014) [arXiv:1409.7414 [hep-th]] [Search inSPIRE].

[7] D. Marcos, P. Widmer, E. Rico, M. Hafezi, P. Rabl, U. J. Wiese, and P. Zoller, Ann. Phys. 351, 634

(2014) [arXiv:1407.6066 [quant-ph]] [Search inSPIRE].

[8] A. Mezzacapo, E. Rico, C. Sabin, I. L. Egusquiza, L. Lamata, and E. Solano, Phys. Rev. Lett. 115,

240502 (2015) [arXiv:1505.04720 [quant-ph]] [Search inSPIRE].

[9] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik, Phys. Rev. Lett. 121, 110504 (2018)

[arXiv:1802.07347 [quant-ph]] [Search inSPIRE].

[10] H. Lamm and S. Lawrence, Phys. Rev. Lett. 121, 170501 (2018) [arXiv:1806.06649 [quant-ph]]

[Search inSPIRE].

[11] N. Klco and M. J. Savage, Phys. Rev. A 99, 052335 (2019) [arXiv:1808.10378 [quant-ph]] [Search

inSPIRE].

[12] E. Gustafson, Y. Meurice, and J. Unmuth-Yockey, Phys. Rev. D 99, 094503 (2019)

[arXiv:1901.05944 [hep-lat]] [Search inSPIRE].

[13] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence [NuQS Collaboration], Phys. Rev. Lett.

123, 090501 (2019) [arXiv:1903.06577 [hep-lat]] [Search inSPIRE].

[14] N. Klco and M. J. Savage, Phys. Rev. A 102, 012612 (2020) [arXiv:1904.10440 [quant-ph]] [Search

inSPIRE].

[15] N. Klco, J. R. Stryker, and M. J. Savage, Phys. Rev. D 101, 074512 (2020) [arXiv:1908.06935 [quantph]] [Search inSPIRE].

[16] H. Lamm, S. Lawrence, and Y. Yamauchi [NuQS Collaboration], Phys. Rev. Research 2, 013272

(2020) [arXiv:1908.10439 [hep-lat]] [Search inSPIRE].

[17] N. Mueller, A. Tarasov, and R. Venugopalan, Phys. Rev. D 102, 016007 (2020) [arXiv:1908.07051

[hep-th]] [Search inSPIRE].

[18] E. Gustafson, P. Dreher, Z. Hang, and Y. Meurice, Quantum Sci. Technol. 6, 045020 (2021)

[arXiv:1910.09478 [hep-lat]] [Search inSPIRE].

[19] E. A. Martinez et al. Nature 534, 516 (2016) [arXiv:1605.04570 [quant-ph]] [Search inSPIRE].

[20] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler, B. Vogell, M. Dalmonte, P. Hauke, R.

Blatt, and P. Zoller, New J. Phys. 19, 103020 (2017) [arXiv:1612.08653 [quant-ph]] [Search inSPIR

E].

[21] N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano,

P. Lougovski, and M. J. Savage, Phys. Rev. A 98, 032331 (2018) [arXiv:1803.03326 [quant-ph]]

[Search inSPIRE].

[22] C. Kokail et al. Nature 569, 355 (2019) [arXiv:1810.03421 [quant-ph]] [Search inSPIRE].

[23] G. Magnifico, M. Dalmonte, P. Facchi, S. Pascazio, F. V. Pepe, and E. Ercolessi, Quantum 4, 281

(2020) [arXiv:1909.04821 [quant-ph]] [Search inSPIRE].

[24] B. Chakraborty, M. Honda, T. Izubuchi, Y. Kikuchi, and A. Tomiya; arXiv:2001.00485 [hep-lat]

[Search inSPIRE].

[25] A. Yamamoto; arXiv:2104.10669 [hep-lat] [Search inSPIRE].

[26] M. Honda, E. Itou, Y. Kikuchi, L. Nagano, and T. Okuda, Phys. Rev. D 105, 014504 (2022)

[arXiv:2105.03276 [hep-lat]] [Search inSPIRE].

[27] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 109, 125302 (2012) [arXiv:1204.6574 [quantph]] [Search inSPIRE].

[28] D. Banerjee, M. Dalmonte, M. Muller, E. Rico, P. Stebler, U. J. Wiese, and P. Zoller, Phys. Rev.

Lett. 109, 175302 (2012) [arXiv:1205.6366 [cond-mat.quant-gas]] [Search inSPIRE].

[29] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 110, 125304 (2013) [arXiv:1211.2241 [quantph]] [Search inSPIRE].

28/30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PTEP 2022, 033B01

M. Honda et al.

[30] D. Banerjee, M. Bogli, M. Dalmonte, E. Rico, P. Stebler, U. J. Wiese, and P. Zoller, Phys. Rev. Lett.

110, 125303 (2013) [arXiv:1211.2242 [cond-mat.quant-gas]] [Search inSPIRE].

[31] U.-J. Wiese, Ann. Phys. 525, 777 (2013) [arXiv:1305.1602 [quant-ph]] [Search inSPIRE].

[32] E. Zohar, J. I. Cirac, and B. Reznik, Rep. Prog. Phys. 79, 014401 (2016) [arXiv:1503.02312 [quantph]] [Search inSPIRE].

[33] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey, and J. Zhang, Phys. Rev. D 92, 076003

(2015) [arXiv:1503.08354 [hep-lat]] [Search inSPIRE].

[34] E. Zohar, A. Farace, B. Reznik, and J. I. Cirac, Phys. Rev. A 95, 023604 (2017) [arXiv:1607.08121

[quant-ph]] [Search inSPIRE].

[35] A. Bermudez, G. Aarts, and M. Muller, Phys. Rev. X 7, 041012 (2017) [arXiv:1704.02877 [quantph]] [Search inSPIRE].

[36] T. V. Zache, F. Hebenstreit, F. Jendrzejewski,1M. K., J. Berges, and P. Hauke, Sci. Technol. 3,

034010 (2018) [arXiv:1802.06704 [cond-mat.quant-gas]] [Search inSPIRE].

[37] J. Zhang, J. Unmuth-Yockey, J. Zeiher, A. Bazavov, S. W. Tsai, and Y. Meurice, Phys. Rev. Lett.

121, 223201 (2018) [arXiv:1803.11166 [hep-lat]] [Search inSPIRE].

[38] H.-H. Lu et al. Phys. Rev. A 100, 012320 (2019) [arXiv:1810.03959 [quant-ph]] [Search inSPIRE].

[39] A. Roy, D. Schuricht, J. Hauschild, F. Pollmann, and H. Saleur; arXiv:2007.06874 [quant-ph] [Se

arch inSPIRE].

[40] H. Bernien et al. Nature 551, 579 (2017) [arXiv:1707.04344 [quant-ph]] [Search inSPIRE].

[41] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A. Gambassi, and M. Dalmonte, Phys. Rev. X

10, 021041 (2020).

[42] T. Pantev and E. Sharpe; arXiv:hep-th/0502027 [Search inSPIRE].

[43] T. Pantev and E. Sharpe, Nucl. Phys. B 733, 233 (2006) [arXiv:hep-th/0502044] [Search inSPIRE].

[44] T. Pantev and E. Sharpe, Adv. Theor. Math. Phys. 10, 77 (2006) [arXiv:hep-th/0502053] [Search in

SPIRE].

[45] S. Hellerman, A. Henriques, T. Pantev, E. Sharpe, and M. Ando; Adv. Theor. Math. Phys. 11, 751

(2007) [arXiv:hep-th/0606034] [Search inSPIRE].

[46] S. Hellerman and E. Sharpe, Adv. Theor. Math. Phys. 15, 1141 (2011) [arXiv:1012.5999 [hep-th]]

[Search inSPIRE].

[47] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High Energy Phys. 1502, 172 (2015)

[arXiv:1412.5148 [hep-th]] [Search inSPIRE].

[48] M. M. Anber and E. Poppitz, J. High Energy Phys. 1809, 076 (2018) [arXiv:1807.00093 [hep-th]]

[Search inSPIRE].

[49] M. M. Anber and E. Poppitz; arXiv:1811.10642 [hep-th] [Search inSPIRE].

[50] A. Armoni and S. Sugimoto, J. High Energy Phys. 1903, 175 (2019) [arXiv:1812.10064 [hep-th]]

[Search inSPIRE].

[51] T. Misumi, Y. Tanizaki, and M. Ünsal; J. High Energy Phys. 1907, 018 (2019) [arXiv:1905.05781

[hep-th]] [Search inSPIRE].

[52] J. S. Schwinger, Phys. Rev. 128, 2425 (1962).

[53] J. S. Schwinger, Phys. Rev. 125, 397 (1962).

[54] N. S. Manton, Ann. Phys. 159, 220 (1985).

[55] J. E. Hetrick and Y. Hosotani, Phys. Rev. D 38, 2621 (1988).

[56] I. Sachs, A. Wipf, Helv. Phys. Acta 65, 652 (1992) [arXiv:1005.1822 [hep-th]] [Search inSPIRE].

[57] Y. Tanizaki and M. Unsal, J. High Energy Phys. 2003, 123 (2020) [arXiv:1912.01033 [hep-th]] [Se

arch inSPIRE].

[58] M. Nguyen, Y. Tanizaki, and M. Ünsal, Phys. Rev. D 104, 065003 (2021) [arXiv:2104.01824 [hepth]] [Search inSPIRE].

[59] Z. Komargodski, K. Ohmori, K. Roumpedakis, and S. Seifnashri; arXiv:2008.07567 [hep-th] [Se

arch inSPIRE].

[60] A. Cherman and T. Jacobson, Phys. Rev. D 103, 105012 (2021) [arXiv:2012.10555 [hep-th]] [Sear

ch inSPIRE].

[61] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg, J. High Energy Phys. 1705, 091 (2017)

[arXiv:1703.00501 [hep-th]] [Search inSPIRE].

[62] Y. Tanizaki and Y. Kikuchi, J. High Energy Phys. 1706, 102 (2017) [arXiv:1705.01949 [hep-th]]

[Search inSPIRE].

29/30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

PTEP 2022, 033B01

M. Honda et al.

[63] Y. Kikuchi and Y. Tanizaki, Prog. Theor. Exp. Phys. 2017, 113B05 (2017) [arXiv:1708.01962 [hepth]] [Search inSPIRE].

[64] Y. Tanizaki and T. Sulejmanpasic, Phys. Rev. B 98, 115126 (2018) [arXiv:1805.11423 [cond-mat.strel]] [Search inSPIRE].

[65] A. Karasik and Z. Komargodski, J. High Energy Phys. 1905, 144 (2019) [arXiv:1904.09551 [hep-th]]

[Search inSPIRE].

[66] C. Cordova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 001 (2020) [arXiv:1905.09315

[hep-th]] [Search inSPIRE].

[67] C. Cordova, D. S. Freed, H. T. Lam, and N. Seiberg, SciPost Phys. 8, 002 (2020) [arXiv:1905.13361

[hep-th]] [Search inSPIRE].

[68] E. Witten, Ann. Phys. 128, 363 (1980).

[69] G. ’t Hooft, Nucl. Phys. B 190, 455 (1981).

[70] E. Witten, Phys. Rev. Lett. 81, 2862 (1998) [arXiv:hep-th/9807109] [Search inSPIRE].

[71] C. Gattringer, D. Göschl, and T. Sulejmanpasic, Nucl. Phys. B 935, 344 (2018) [arXiv:1807.07793

[hep-lat]] [Search inSPIRE].

[72] A. Messiah; Quantum Mechanics(North-Holland, Amsterdam, 1962), Vol. II.

[73] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser; arXiv:quant-ph/0001106 [Search inSPIRE].

[74] S. Lloyd, Science 273, 1073 (1996).

[75] M. Suzuki, J. Math. Phys. 32, 400 (1991)

[76] C. Adam, Ann. Phys. 259, 1 (1997) [arXiv:hep-th/9704064] [Search inSPIRE].

[77] S. Chandrasekharan and U. J. Wiese, Nucl. Phys. B 492, 455 (1997) [arXiv:hep-lat/9609042] [Sear

ch inSPIRE].

[78] B. B. Beard, M. Pepe, S. Riederer, and U. J. Wiese, Phys. Rev. Lett. 94, 010603 (2005) [arXiv:heplat/0406040] [Search inSPIRE].

[79] U.-J. Wiese; arXiv:2107.09335 [hep-lat] [Search inSPIRE].

[80] S. Jansen, M.-B. Ruskai, and R. Seiler, J. Math. Phys. 48, 102111 (2007).

[81] P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).

[82] P. Weinberg and M. Bukov; SciPost Phys. 7, 020 (2019) [arXiv:1804.06782 [physics.comp-ph]] [Se

arch inSPIRE].

[83] S. R. Coleman, Ann. Phys. 101, 239 (1976).

[84] T. Byrnes, P. Sriganesh, R. Bursill, and C. Hamer, Phys. Rev. D 66, 013002 (2002) [arXiv:heplat/0202014] [Search inSPIRE].

30/30

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る