リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pathophysiological features in the brains of female Spontaneously Diabetic Torii (SDT) fatty rats」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pathophysiological features in the brains of female Spontaneously Diabetic Torii (SDT) fatty rats

Maekawa, Tatsuya Sugimoto, Miki Kume, Shinichi Ohta, Takeshi 京都大学 DOI:10.1292/jvms.21-0654

2022.03

概要

Diabetes mellitus (DM) and obesity are associated with neurodegenerative diseases such as Alzheimer’s disease and psychiatric disorders such as major depression. In this study, we investigated pathophysiological changes in the brains of female Spontaneously Diabetic Torii (SDT) fatty rats with diabetes and obesity. Brains of Sprague-Dawley (SD), SDT and SDT fatty rats were collected at 58 weeks of age. The parietal cortical thickness was measured and the number of pyramidal cells in the hippocampal cornu ammonis 1 and 3 (CA1 and CA3) and the number of granule cells in the dentate gyrus (DG) regions were counted. The area of glial fibrillary acidic protein (GFAP) positivity in CA1, CA3 and DG regions were measured. The parietal cortical thickness and the number of cells in CA3 and DG regions of SDT and SDT fatty rats did not show obvious changes. On the other hand, in the CA1 region, the number of cells in SDT rats and SDT fatty rats was significantly lower than that in SD rats, and that in SDT fatty rats was significantly lower than that in SDT rats. The GFAP-positive area in SDT fatty rats was significantly reduced compared to that in SD rats only in the DG region. Preliminarily result showed that the expression of S100a9, an inflammation-related gene, was increased in the brains of SDT fatty rats. These results suggest that female SDT fatty rat may exhibit central nervous system diseases due to obesity and DM.

この論文で使われている画像

参考文献

1. Abildgaard, A., Solskov, L., Volke, V., Harvey, B. H., Lund, S. and Wegener, G. 2011. A high-fat diet exacerbates depressive-like behavior in the

flinders sensitive line (FSL) rat, a genetic model of depression. Psychoneuroendocrinology 36: 623–633. [Medline] [CrossRef]

2. Agarwal, M. and Khan, S. 2020. Plasma lipids as biomarkers for Alzheimer’s disease: a systematic review. Cureus 12: e12008. [Medline]

3. Akomolafe, A., Beiser, A., Meigs, J. B., Au, R., Green, R. C., Farrer, L. A., Wolf, P. A. and Seshadri, S. 2006. Diabetes mellitus and risk of

developing Alzheimer disease: results from the Framingham Study. Arch. Neurol. 63: 1551–1555. [Medline] [CrossRef]

4. Appleton, J. P., Scutt, P., Sprigg, N. and Bath, P. M. 2017. Hypercholesterolaemia and vascular dementia. Clin. Sci. (Lond.) 131: 1561–1578.

[Medline] [CrossRef]

5. Aswar, U., Chepurwar, S., Shintre, S. and Aswar, M. 2017. Telmisartan attenuates diabetes induced depression in rats. Pharmacol. Rep. 69:

358–364. [Medline] [CrossRef]

6. Casanova, F., O’Loughlin, J., Martin, S., Beaumont, R. N., Wood, A. R., Watkins, E. R., Freathy, R. M., Hagenaars, S. P., Frayling, T. M.,

Yaghootkar, H. and Tyrrell, J. 2021. Higher adiposity and mental health: causal inference using Mendelian randomization. Hum. Mol. Genet. 30:

2371–2382. [Medline] [CrossRef]

7. Cobb, J. A., O’Neill, K., Milner, J., Mahajan, G. J., Lawrence, T. J., May, W. L., Miguel-Hidalgo, J., Rajkowska, G. and Stockmeier, C. A. 2016.

Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 316: 209–220. [Medline]

[CrossRef]

8. Fazeli, S. A., Gharravi, A. M., Ghafari, S., Jahanshahi, M. and Golalipour, M. J. 2008. The granule cell density of the dentate gyrus following

administration of Urtica dioica extract to young diabetic rats. Folia Morphol. (Warsz) 67: 196–204. [Medline]

9. Foster, R., Kandanearatchi, A., Beasley, C., Williams, B., Khan, N., Fagerhol, M. K. and Everall, I. P. 2006. Calprotectin in microglia from frontal

cortex is up-regulated in schizophrenia: evidence for an inflammatory process? Eur. J. Neurosci. 24: 3561–3566. [Medline] [CrossRef]

10. Frölich, L., Blum-Degen, D., Bernstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., Muschner, D., Thalheimer, A., Türk, A., Hoyer, S.,

Zöchling, R., Boissl, K. W., Jellinger, K. and Riederer, P. 1998. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J.

Neural Transm. (Vienna) 105: 423–438. [Medline] [CrossRef]

11. Gemmell, E., Bosomworth, H., Allan, L., Hall, R., Khundakar, A., Oakley, A. E., Deramecourt, V., Polvikoski, T. M., O’Brien, J. T. and Kalaria, R.

N. 2012. Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke 43: 808–814. [Medline]

[CrossRef]

J. Vet. Med. Sci. 84(3): 330–337, 2022

335

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

T. MAEKAWA ET AL.

12. Golden, S. H., Lazo, M., Carnethon, M., Bertoni, A. G., Schreiner, P. J., Diez Roux, A. V., Lee, H. B. and Lyketsos, C. 2008. Examining a

bidirectional association between depressive symptoms and diabetes. JAMA 299: 2751–2759. [Medline] [CrossRef]

13. Ha, T. Y., Chang, K. A., Kim, J., Kim, H. S., Kim, S., Chong, Y. H. and Suh, Y. H. 2010. S100a9 knockdown decreases the memory impairment and

the neuropathology in Tg2576 mice, AD animal model. PLoS One 5: e8840. [Medline] [CrossRef]

14. Hogenboom, R., Kalsbeek, M. J., Korpel, N. L., de Goede, P., Koenen, M., Buijs, R. M., Romijn, J. A., Swaab, D. F., Kalsbeek, A. and Yi, C. X.

2019. Loss of arginine vasopressin- and vasoactive intestinal polypeptide-containing neurons and glial cells in the suprachiasmatic nucleus of

individuals with type 2 diabetes. Diabetologia 62: 2088–2093. [Medline] [CrossRef]

15. Holt, R. I. G., Peveler, R. C. and Byrne, C. D. 2004. Schizophrenia, the metabolic syndrome and diabetes. Diabet. Med. 21: 515–523. [Medline]

[CrossRef]

16. Ikubo, K., Yamanishi, K., Doe, N., Hashimoto, T., Sumida, M., Watanabe, Y., El-Darawish, Y., Li, W., Okamura, H., Yamanishi, H. and Matsunaga,

H. 2017. Molecular analysis of the mouse brain exposed to chronic mild stress: The influence of hepatocyte nuclear factor 4α on physiological

homeostasis. Mol. Med. Rep. 16: 301–309. [Medline] [CrossRef]

17. Ishii, Y., Ohta, T., Sasase, T., Morinaga, H., Ueda, N., Hata, T., Kakutani, M., Miyajima, K., Katsuda, Y., Masuyama, T., Shinohara, M. and

Matsushita, M. 2010. Pathophysiological analysis of female Spontaneously Diabetic Torii fatty rats. Exp. Anim. 59: 73–84. [Medline] [CrossRef]

18. Jack, C. R. J. Jr., Wiste, H. J., Weigand, S. D., Knopman, D. S., Vemuri, P., Mielke, M. M., Lowe, V., Senjem, M. L., Gunter, J. L., Machulda, M.

M., Gregg, B. E., Pankratz, V. S., Rocca, W. A. and Petersen, R. C. 2015. Age, sex, and APOE ε4 effects on memory, brain structure, and β-amyloid

across the adult life span. JAMA Neurol. 72: 511–519. [Medline] [CrossRef]

19. Jahanshahi, M., Golalipour, M. J. and Afshar, M. 2009. The effect of Urtica dioica extract on the number of astrocytes in the dentate gyrus of

diabetic rats. Folia Morphol. (Warsz) 68: 93–97. [Medline]

20. Katsuda, Y., Sasase, T., Tadaki, H., Mera, Y., Motohashi, Y., Kemmochi, Y., Toyoda, K., Kakimoto, K., Kume, S. and Ohta, T. 2015. Contribution

of hyperglycemia on diabetic complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin. Exp. Anim. 64: 161–169.

[Medline] [CrossRef]

21. Khan, U., Porteous, L., Hassan, A. and Markus, H. S. 2007. Risk factor profile of cerebral small vessel disease and its subtypes. J. Neurol.

Neurosurg. Psychiatry 78: 702–706. [Medline] [CrossRef]

22. Kuan, Y. C., Huang, K. W., Lin, C. L., Hu, C. J. and Kao, C. H. 2017. Effects of metformin exposure on neurodegenerative diseases in elderly

patients with type 2 diabetes mellitus. Prog. Neuropsychopharmacol. Biol. Psychiatry 79 Pt B: 77–83. [Medline] [CrossRef]

23. Lechuga-Sancho, A. M., Arroba, A. I., Frago, L. M., García-Cáceres, C., de Célix, A. D. R., Argente, J. and Chowen, J. A. 2006. Reduction in the

number of astrocytes and their projections is associated with increased synaptic protein density in the hypothalamus of poorly controlled diabetic

rats. Endocrinology 147: 5314–5324. [Medline] [CrossRef]

24. Li, Z. G., Zhang, W., Grunberger, G. and Sima, A. A. 2002. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res. 946: 221–231. [Medline]

[CrossRef]

25. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))

Method. Methods 25: 402–408. [Medline] [CrossRef]

26. Maekawa, T., Ohta, T. and Kume, S. 2018. Pathophysiological abnormalities in the brains of Spontaneously Diabetic Torii-Lepr fa (SDT fatty) rats, a

novel type 2 diabetic model. J. Vet. Med. Sci. 80: 1385–1391. [Medline] [CrossRef]

27. Maekawa, T., Tadaki, H., Sasase, T., Motohashi, Y., Miyajima, K., Ohta, T. and Kume, S. 2017. Pathophysiological profiles of SDT fatty rats, a

potential new diabetic peripheral neuropathy model. J. Pharmacol. Toxicol. Methods 88: 160–166. [Medline] [CrossRef]

28. Masuyama, T., Fuse, M., Yokoi, N., Shinohara, M., Tsujii, H., Kanazawa, M., Kanazawa, Y., Komeda, K. and Taniguchi, K. 2003. Genetic analysis

for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem. Biophys. Res. Commun. 304: 196–206.

[Medline] [CrossRef]

29. Masuyama, T., Katsuda, Y. and Shinohara, M. 2005. A novel model of obesity-related diabetes: introgression of the Lepr(fa) allele of the Zucker

fatty rat into nonobese Spontaneously Diabetic Torii (SDT) rats. Exp. Anim. 54: 13–20. [Medline] [CrossRef]

30. Matsui, K., Ohta, T., Oda, T., Sasase, T., Ueda, N., Miyajima, K., Masuyama, T., Shinohara, M. and Matsushita, M. 2008. Diabetes-associated

complications in Spontaneously Diabetic Torii fatty rats. Exp. Anim. 57: 111–121. [Medline] [CrossRef]

31. May, M. 2016. Sex on the brain: unraveling the differences between women and men in neurodegenerative disease. Nat. Med. 22: 1370–1372.

[Medline] [CrossRef]

32. McFarlane, O. and Kędziora-Kornatowska, K. 2020. Cholesterol and dementia: a long and complicated relationship. Curr. Aging Sci. 13: 42–51.

[Medline] [CrossRef]

33. Moran, C., Beare, R., Phan, T. G., Bruce, D. G., Callisaya, M. L., Srikanth V., Alzheimer’s Disease Neuroimaging Initiative (ADNI). 2015. Type 2

diabetes mellitus and biomarkers of neurodegeneration. Neurology 85: 1123–1130. [Medline] [CrossRef]

34. Nie, X., Kitaoka, S., Tanaka, K., Segi-Nishida, E., Imoto, Y., Ogawa, A., Nakano, F., Tomohiro, A., Nakayama, K., Taniguchi, M., Mimori-Kiyosue,

Y., Kakizuka, A., Narumiya, S. and Furuyashiki, T. 2018. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social

avoidance through prefrontal microglial activation. Neuron 99: 464–479.e7. [Medline] [CrossRef]

35. Ninomiya-Baba, M., Matsuo, J., Sasayama, D., Hori, H., Teraishi, T., Ota, M., Hattori, K., Noda, T., Ishida, I., Shibata, S. and Kunugi, H. 2017.

Association of body mass index-related single nucleotide polymorphisms with psychiatric disease and memory performance in a Japanese

population. Acta Neuropsychiatr. 29: 299–308. [Medline] [CrossRef]

36. Nouwen, A., Winkley, K., Twisk, J., Lloyd, C. E., Peyrot, M., Ismail, K., Pouwer F., European Depression in Diabetes (EDID) Research

Consortium. 2010. Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis. Diabetologia 53:

2480–2486. [Medline] [CrossRef]

37. Ohta, T., Katsuda, Y., Miyajima, K., Sasase, T., Kimura, S., Tong, B. and Yamada, T. 2014. Gender differences in metabolic disorders and related

diseases in Spontaneously Diabetic Torii-Lepr(fa) rats. J. Diabetes Res. 2014: 841957. [Medline] [CrossRef]

38. Sakimura, K., Maekawa, T., Sasagawa, K., Ishii, Y., Kume, S. I. and Ohta, T. 2018. Depression-related behavioural and neuroendocrine changes

in the Spontaneously Diabetic Torii (SDT) fatty rat, an animal model of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 45: 927–933.

[Medline] [CrossRef]

39. Sakimura, K., Maekawa, T., Kume, S. I. and Ohta, T. 2018. Spontaneously diabetic torii (SDT) fatty rat, a novel animal model of type 2 diabetes

mellitus, shows blunted circadian rhythms and melatonin secretion. Int. J. Endocrinol. 2018: 9065690. [Medline] [CrossRef]

40. Saravia, F. E., Revsin, Y., Gonzalez Deniselle, M. C., Gonzalez, S. L., Roig, P., Lima, A., Homo-Delarche, F. and De Nicola, A. F. 2002. Increased

astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain

Res. 957: 345–353. [Medline] [CrossRef]

41. Shepherd, C. E., Goyette, J., Utter, V., Rahimi, F., Yang, Z., Geczy, C. L. and Halliday, G. M. 2006. Inflammatory S100A9 and S100A12 proteins in

J. Vet. Med. Sci. 84(3): 330–337, 2022

336

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

FEATURES IN FEMALE SDT FATTY RAT BRAIN

Alzheimer’s disease. Neurobiol. Aging 27: 1554–1563. [Medline] [CrossRef]

42. Shinohara, M., Masuyama, T., Shoda, T., Takahashi, T., Katsuda, Y., Komeda, K., Kuroki, M., Kakehashi, A. and Kanazawa, Y. 2000. A new

spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int. J. Exp. Diabetes Res. 1: 89–100. [Medline] [CrossRef]

43. Shinohara, M., Tashiro, Y., Shinohara, M., Hirokawa, J., Suzuki, K., Onishi-Takeya, M., Mukouzono, M., Takeda, S., Saito, T., Fukumori, A., Saido,

T. C., Morishita, R. and Sato, N. 2020. Increased levels of Aβ42 decrease the lifespan of ob/ob mice with dysregulation of microglia and astrocytes.

FASEB J. 34: 2425–2435. [Medline] [CrossRef]

44. Stranahan, A. M. 2015. Models and mechanisms for hippocampal dysfunction in obesity and diabetes. Neuroscience 309: 125–139. [Medline]

[CrossRef]

45. Tanaka, M., Asanuma, A., Ikuta, J., Yamada, H., Shimizu, S., Koga, T. and Kakishita, T. 1995. Age-related memory impairment and hippocampal

damage in ddY male mice. Exp. Anim. 43: 697–702 (in Japanese). [Medline] [CrossRef]

46. Wang, J. Q., Yin, J., Song, Y. F., Zhang, L., Ren, Y. X., Wang, D. G., Gao, L. P. and Jing, Y. H. 2014. Brain aging and AD-like pathology in

streptozotocin-induced diabetic rats. J. Diabetes Res. 2014: 796840. [Medline] [CrossRef]

47. Wrighten, S. A., Piroli, G. G., Grillo, C. A. and Reagan, L. P. 2009. A look inside the diabetic brain: Contributors to diabetes-induced brain aging.

Biochim. Biophys. Acta 1792: 444–453. [Medline] [CrossRef]

48. Yang, Y., Zhang, J., Ma, D., Zhang, M., Hu, S., Shao, S. and Gong, C. X. 2013. Subcutaneous administration of liraglutide ameliorates Alzheimerassociated tau hyperphosphorylation in rats with type 2 diabetes. J. Alzheimers Dis. 37: 637–648. [Medline] [CrossRef]

J. Vet. Med. Sci. 84(3): 330–337, 2022

337

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る