リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Recursive Vesicle Reproduction System Coupled with Enzymatic Cascade Reactions: Toward Synthetic Minimal Cell」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Recursive Vesicle Reproduction System Coupled with Enzymatic Cascade Reactions: Toward Synthetic Minimal Cell

Kurisu Minoru 東北大学

2022.03.25

概要

In this thesis, I firstly focused on the artificial information polymer in chapter 2. Based on the consideration to the essence of information polymer on the thermodynamical entropy loss and the enthalpy gain, I focused on the template polymerization system by using vesicle membrane as a template. Due to the specific interaction between vesicle forming molecules and monomers, the polymerization process was restricted to forn regular sequence structure of polyaniline, PANI-ES. PANI-ES encodes the property (sulfonated/sulfated polar head group) of vesicle forming molecules as its regular sequence structure, which selectively promote the incorporation of the corresponding membrane molecules, resulting in vesicle membrane growth (decode). Thus, PANI-ES was confirmed to work as information polymer for vesicles. In chapter 3, based on the knowledge of recent molecular biology and the well-known protocell model, I designed artificial metabolism system which conceptually mimics the three essential reaction domains for biological systems: energy currency production domain, information polymer synthesis domain, and membrane growth domain. Then, I introduced a new reaction domain to produce energy currency molecule, H2O2, from D-glucose and dissolved oxygen with enzyme GOD. After the optimization of the reaction condition, the synthesis of information polymer and vesicle membrane growth were successfully achieved with the artificial metabolism system involving energy currency production domain. In chapter 4, I constructed reduced model reaction system which extract the essence from the actual metabolism system, and then I developed the kinetic model to describe the system. Our artificial metabolism system has simple and clear reaction network, therefore, I could finally reproduces the experimental system without no adjustable parameters. That means the artificial metabolism system works well according to my design. For the synthetic minimal cell system, the vesicles should show not only membrane growth, but also show the deformation to the limiting shape, the division of the neck, and volume recovery to their original sizes. Biological systems adopted very complex molecular mechanism to attain this reproduction cycle, but such mechanism is not appropriate for the “minimal” cell system. Therefore, in chapter 5, I controlled the morphology of vesicles based on the knowledge of the membrane elasticity theory, and I also designed the sustainable osmotic inflation system. Then, finally, I succeeded in realizing complete vesicle reproduction cycle coupled with artificial metabolism system. All in all, my synthetic minimal cell system conceptually the three major characteristics of biological system: gene, metabolism, and reproduction.

Comparing my synthetic minimal cell design and biological systems, there are some significant differences. First, while genetic information flows from DNA to proteins in one-way in biological systems, my synthetic minimal cell has the two-way genetic information flow, i.e., I have called PANI-ES as information polymer for the sake of convenience, but the information of vesicles are encoded in PANI-ES, and at the same time, the sequential information of PANI-ES is also encoded as vesicle membranes. When we consider the very beginning stage of the emergence of living systems, such difference in the direction of genetic information flow may affect the stability and evolvability of the system. Second, the membrane molecules are not synthesized in my artificial metabolism design. In any biological systems, they synthesize membrane molecules and then incorporate them into cell membrane. When we consider the universal essence of any living systems, we will need to discuss the necessity of mechanisms to synthesize the compartment-consisting molecules. Finally, my synthetic minimal cell does not contain the reaction system inside the membrane, but exposes it on the outer surface of vesicle membrane. Here, we need to discuss the essence of compartment for living systems. My minimal cell can prevent dissociation of information polymer through the specific interaction between the membrane, so the minimal cell keeps reaction field on its surface. Recently many protocell / minimal cell model have been proposed, and some of them uses droplet or coacervate as template. When we will succeed in mimicking biological behavior by such membrane-less compartment, how can we define such systems? All in all, the bottom-up constructive approaches to understanding of universal essence of any possible living systems will have the possibility to capture the living systems from various field of science, including physical sciences. My synthetic minimal cell will be one of the pioneering systems to contribute to open up a new road for the physical understanding of living systems.

この論文で使われている画像

参考文献

Adamala, K., & Szostak, J. W. “Competition between model protocells driven by an encapsulated catalyst.” Nature Chemistry, 5, 495–501 (2013).

Araiso, T. & Dunford, H.B. “Horseradish peroxidase. XLI. Complex formation with nitrate and its effect upon compound I formation.”, J. Chem. Inf. Model., 53, 1689–1699 (1980).

Akashi, M. & Ajiro, H. “Template Polymerization (Molecular Templating)” in Encyclopedia of Polymeric Nanomaterials., Springer-Verlag Berlin Heidelberg, (2014). doi:10.1007/978-3-642-36199-9

Akashi, M. (Japanese article) “「テンプレート重合」-30 年後の解答とその先へ”, ⾼分⼦, 54, 318-319 (2005). https://www.jstage.jst.go.jp/article/kobunshi1952/54/5/54_5_318/_pdf

Alberts, B. et al. “Molecular Biology of the Cell” 6th ed., Garland Science, (2015).

Allen, W. V. & Ponnamperuma, C. “A possible prebiotic synthesis of monocarboxylic acids.” BioSystems 1, 24–28 (1967).

Athavale, S. S., Spicer, B. & Chen, I. A. “Experimental fitness landscapes to understand the molecular evolution of RNA-based life.” Curr. Opin. Chem. Biol. 22, 35–39 (2014).

Attwater, J., Wochner, A. & Holliger, P. “In-ice evolution of RNA polymerase ribozyme activity.” Nat. Chem. 5, 1011–1018 (2013).

Baaske, P. et al. “Extreme accumulation of nucleotides in simulated hydrothermal pore systems.” Proc. Natl. Acad. Sci., 104, 9346–9351 (2007).

Bankar, S. B., Bule, M. V., Singhal, R. S. & Ananthanarayan, L. “Glucose oxidase - An overview.”, Biotechnol. Adv., 27, 489–501 (2009).

Baxter, R. & Hu, P. “Insight into why the Langmuir-Hinshelwood mechanism is generally preferred.”, J. Chem. Phys., 116, 4379-4381 (2002).

Becker, S. et al. “Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides.” Science. 366, 76–82 (2019).

Bhattacharya, A., Brea, R. J., Niederholtmeyer, H. & Devaraj, N. K. “A minimal biochemical route towards de novo formation of synthetic phospholipid membranes.” Nat. Commun. 10, 1–8(2019).

Bhattacharya, A., Cho, C. J., Brea, R. J. & Devaraj, N. K. “Expression of Fatty Acyl-CoA Ligase Drives One-Pot de Novo Synthesis of Membrane-Bound Vesicles in a Cell-Free TranscriptionTranslation System.” J. Am. Chem. Soc. 143, 11235–11242 (2021).

Bich, L., & Green, S. “Is defining life pointless? Operational definitions at the frontiers of biology.”, Synthese, 195, 3919-3946 (2018).

Bilal, S., Gul, S., Holze, R. & Shah, A.A. “An impressive emulsion polymerization route for the synthesis of highly soluble and con- ducting polyaniline salts.”, Synth. Met., 206, 131–144 (2015).

Bissette, A. J., & Fletcher, S. P. “Mechanisms of autocatalysis.”, Angew. Chem. Int.Ed., 52, 12800–12826 (2013).

Black, R. A. et al. “Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells.” Proc. Natl. Acad. Sci. U. S. A. 110, 13272–13276 (2013).

Black, R. A. & Blosser, M. C. “A self-assembled aggregate composed of a fatty acid membrane and the building blocks of biological polymers provides a first step in the emergence of protocells.” Life 6, (2016).

Blain, J. C. & Szostak, J. W. “Progress toward synthetic cells.” Annu. Rev. Biochem. 83, 615–640 (2014).

Blanken, D., Foschepoth, D., Serrão, A. C. & Danelon, C. “Genetically controlled membrane synthesis in liposomes.” Nat. Commun. 11, 1–13 (2020).

Bozic, B., Svetina, S., Zeks, B. & Waugh, R. E. “Role of lamellar membrane structure in tether formation from bilayer vesicles.”, Biophys. J., 61, 963–973 (1992).

Brakke, K. A. “The surface evolver.”, Exp. Math., 1, 141–165 (1992).

Braun, D. & Libchaber, A. “Trapping of DNA by Thermophoretic Depletion and Convection.” Phys. Rev. Lett. 89, 2–5 (2002).

Brea, R. J., Cole, C. M. & Devaraj, N. K. “In Situ Vesicle Formation by Native Chemical Ligation.” Angew. Chemie 126, 14326–14329 (2014).

Brea, R. J., Bhattacharya, A. & Devaraj, N. K. “Spontaneous Phospholipid Membrane Formation by Histidine Ligation.” Synlett 28, 108–112 (2017).

Breuer, M. et al. “Essential metabolism for a minimal cell.”, Elife, 8, 1–77 (2019).

Bright, H. J. & Porter, D. J. T. P., D.Boyer (Ed.), “Flavoprotein oxidases”, in “The Enzymes: vol. 12” (3rd ed.). NewYork: Academic Press. (1975).

Bruckner, R. J., Mansy, S. S., Ricardo, A., Mahadevan, L. & Szostak, J. W. “Flip-flop-induced relaxation of bending energy: Implications for membrane remodeling.”, Biophys. J., 97, 3113–3122 (2009).

Caschera, F., Stano, P. & Luisi, P. L. “Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles.” J. Colloid Interface Sci. 345, 561–565 (2010).

Castro, J. M., Sugiyama, H. & Toyota, T. “Budding and Division of Giant Vesicles Linked to Phospholipid Production.” Sci. Rep. 9, 1–9 (2019).

Cleland, W.W. (1963). “The kinetics of enzyme-catalyzed reactions with two or more substrates or products: I. Nomenclature and rate equations.”, Biochim. Biophys. Acta, 67, 104-137. “The kinetics of enzyme-catalyzed reactions with two or more substrates or products: II. Inhibition: nomenclature and theory”, Biochim. Biophys. Acta, 67, 173-187. “The kinetics of enzyme-catalyzed reactions with two or more substrates or products: III. Prediction of initial velocity and inhibition patterns by inspection.”, Biochim. Biophys. Acta, 67, 188-196.

Chen, C. M., Higgs, P. G. & Mac Kintosh, F. C. “Theory of fission for two-component lipid vesicles.”, Phys. Rev. Lett., 79, 1579–1582 (1997).

Chen, I. A., & Szostak, J. W. (2004). (a) “A kinetic study of the growth of fatty acid vesicles.” Biophysical Journal, 87, 988–998. (b) “Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.”, Proc. Natl. Acad. Sci.,101, 7965–7970.

Chen, I. A. & Walde, P. “From self-assembled vesicles to protocells.” Cold Spring Harb. Perspect. Biol. 2, 1–14 (2010).

Cherney, D. P., Bridges, T. E. & Harris, J. M. “Optical trapping of unilamellar phospholipid vesicles: Investigation of the effect of optical forces on the lipid membrane shape by confocalRaman microscopy.”, Anal. Chem., 76, 4920–4928 (2004).

Chibowski, E. & Szcześ, A. “Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme.” Adsorption 22, 755–765 (2016).

Childs, R. E. & Bardsley, W. G. “The steady-state kinetics of peroxidase with 2,2′-azino-di-(3- ethyl-benzthiazoline-6-sulphonic acid) as chromogen.”, Biochem. J., 145, 93–103 (1975).

Cochet, M., Louarn, G., Quillard, S., Buisson, J.P., and Lefrant, S. “Theoretical and experimental vibrational study of emeraldine in salt form. Part II”, J. Raman Spectrosc., 31, 1041–1049 (2000).

Cordomí, A., Edholm, O. & Perez, J. J. “Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. A molecular dynamics simulation study.” J. Phys. Chem. B 112, 1397–1408 (2008).

Cornell, C. E. et al. “Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes.” Proc. Natl. Acad. Sci. 116, 17239–17244 (2019).

Crick, F.H. “The origin of the genetic code.” J. Mol. Biol., 38, 367–379 (1968).

Crick, F.H. “Central dogma of molecular biology.” Nature, 227, 561-563 (1970).

Ćirić-Marjanović, G., Trchová, M., and Stejskal, J. “The chemical oxidative polymerization of aniline in water: Raman spectroscopy”, J. Raman Spectrosc., 39, 1375– 1387 (2008).

Ćirić-Marjanović, G., Milojević-Rakić, M., Janošević-Ležaić, A., Luginbühl, S. & Walde, P. “Enzymatic oligomerization and polymerization of arylamines: State of the art and perspectives.”, Chem. Pap., 71, 199–242 (2017).

Derganc, J. “Curvature-driven lateral segregation of membrane constituents in Golgi cisternae.”, Phys. Biol., 4, 317–324 (2007).

Deshpande, S., Wunnava, S., Hueting, D. & Dekker, C. “Membrane Tension–Mediated Growth of Liposomes.” Small 15, 1–10 (2019).

Ding, Y., Padias, A.B., and Hall, H.K. “Chemical Trapping Experiments Support a Cation-Radical Mechanism for the Oxidative Polymerization of Aniline.”, J. Polym. Sci. Part A: Polym. Chem., 37, 2569-1579 (1999).

Deamer, D. W. “Boundary structures are formed by organic components of the Murchison carbonaceous chondrite.” Nature 317, 792–794 (1985).

Deamer, D. “The Role of Lipid Membranes in Life’s Origin”. Life 7, 5 (2017). de Lange, N., Kleijn, J. M. & Leermakers, F. “Structural and mechanical parameters of lipid bilayer membranes using a lattice refined self-consistent field theory.”, Phys. Chem. Chem. Phys., 23, 5152–5175 (2021).

Dennany, L., Innis, P. C., McGovern, S. T., Wallace, G. G. & Forster, R. J. “Electronic interactions within composites of polyanilines formed under acidic and alkaline conditions. Conductivity, ESR, Raman, UV-vis and fluorescence studies.” Phys. Chem. Chem. Phys. 13, 3303–3310 (2011).

Dervaux, J., Noireaux, V. & Libchaber, A. J. “Growth and instability of a phospholipid vesicle in a bath of fatty acids.” Eur. Phys. J. Plus, 132, 1–10 (2017).

Desjonquères, M.C. & Spanjaard, D. “Concepts in Surface Physics”, 2nd ed., Springer-Verlag, Berlin, 2002.

De Visser, J. A. G. M. & Krug, J. “Empirical fitness landscapes and the predictability of evolution.” Nat. Rev. Genet. 15, 480–490 (2014).

Dimitrieva, E. & Dunsch, L. “How linear is “linear” polyaniline?”, J Phys Chem B, 115, 6401– 6411 (2011).

Ding, Y., Padias, A.B., & Hall, H.K. “Chemical Trapping Experiments Support a Cation-Radical Mechanism for the Oxidative Polymerization of Aniline.”, J. Polym. Sci. Part A: Polym. Chem., 37, 2569-1579 (1999).

Do Carmo, M. P. “Differential geometry of curves and surfaces: revised and updated second edition.”, Courier Dover Publications, (2016). do Nascimento, G. M. & de Souza, M. A. In “Nanostructured Conductive Polymers.” ed. Eftekhari, A., John Wiley & Sons, Chichester, (2015).

Dreher, Y., Jahnke, K., Bobkova, E., Spatz, J. P. & Göpfrich, K. “Division and regrowth of phaseseparated giant unilamellar vesicles.” Angew. Chemie 133, 2–11 (2021).

Dunford, H.B. & Stillman, J.S. “On the function and mechanism of action of peroxidases.”, Coord. Chem. Rev., 19, 187–251 (1976).

Dunford, H. B., Hewson, W. D. & Steiner, H. “Horseradish peroxidase. XXIX. Reactions in water and deuterium oxide: cyanide binding, compound I formation, and reactions of compounds I and II with ferrocyanide.”, Can. J. Chem., 56, 2844–2852 (1978).

Dunford, H.B. Chapter 1 (pp.1-24) in “Peroxidases in Chemistry and Biology” Vol. II, CRC Press, (1991).

Dunford, H.B. “Heme Peroxidases.”, John Wiley & Sons (1999).

Döbereiner, H. G., Evans, E., Kraus, M., Seifert, U. & Wortis, M. “Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory.”, Phys. Rev. E, 55, 4458–4474 (1997).

Eigen, M. & Schuster, P. “The Hypercycle. A Principle of Natural Self-Organization Part A: Emergence of the Hypercycle.” Naturwissenschafte 64, 541–565 (1977).

Eigen, M. & Schuster, P. (a) “The Hypercycle. A principle of Natural Self-Organization. Part B: The Abstract Hypercycle.” Naturwissenschaften, 65, 7–41 (1978). (b) “The Hypercycle. A Principle of Natural Self-Organization. Part C: The Realistic Hypercycle.” Naturwissenschaften 65, 341–369 (1978).

Eigen, M. & Schuster, P. “The Hypercycle: a principle of natural self-organization”, Springer Science & Business Media (2012).

Edwards, H. G. M., Brown, D. R., Dale, J. A., and Plant, S. “Raman spectroscopy of sulfonated polystyrene resins”, Vib. Spectrosc., 24, 213–224 (2000).

Exterkate, M., Caforio, A., Stuart, M. C. A. & Driessen, A. J. M. “Growing Membranes in Vitro by Continuous Phospholipid Biosynthesis from Free Fatty Acids.” ACS Synth. Biol. 7, 153–165(2018).

Ferguson, J. & Shah, A. O. “Further studies on polymerization in interacting polymer systems.”, Eur. Polym. J. 4, 611–619 (1968).

Ferris, J. P. “Montmorillonite catalysis of 30-50 mer oligonucleotides: Laboratory demonstration of potential steps in the origin of the RNA world.” Orig. Life Evol. Biosph. 32, 311–332 (2002).

Field, R. J., Koros, E. & Noyes, R. M. “Oscillations in Chemical Systems. II. Thorough Analysis of Temporal Oscillation in the Bromate-Cerium-Malonic Acid System.”, J. Am. Chem. Soc., 381, 8649–8664 (1972).

Field, R. J. & Noyes, R. M. “Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction.” J. Chem. Phys., 60, 1877–1884 (1974).

Foreman, J. P. & Monkman, A. P. “Theoretical investigations into the structural and electronic influences on the hydrogen bonding in doped polyaniline.”, Synth. Met., 107, 7604–7610 (2003).

Fourcade, B., Miao, L., Pao, M. & Wortis, M. “Scaling analysis of narrow necks in curvature models of fluid-bilayer vesicles.”, Phys. Rev. E, 49, 5276–5287 (1994).

Fujisaki, T. et al. “Effect of template type on the preparation of the emeraldine salt form of polyaniline (PANI-ES) with horseradish peroxidase isoenzyme C (HRPC) and hydrogen peroxide.”, RSC Adv., 9, 33080–33095 (2019).

Gaut, N. J. & Adamala, K. P. “Reconstituting Natural Cell Elements in Synthetic Cells.” Adv. Biol. 5, 1–20 (2021).

Gánti, T. “Organization of chemical reactions into dividing and metabolizing units: The chemotons.”, BioSystems, 7, 15 – 21 (1975).

Gánti, T. “On the early evolutionary origin of biological periodicity.”, Cell Biol. Int., 26, 729–735

(2002).

Gánti, T., “The Principles of Life.”, Száthmary, E., & Griesemer, J. (eds.), Oxford University Press, (2003).

Genies, E. M. & Tsintavis, C. “Redox mechanism and electrochemical polyaniline deposits behaviour of polyaniline deposits.”, J. Electroanal. Chem., 195, 109–128 (1985).

Ghosh, B., Bose, R. & Tang, T. Y. D. “Can coacervation unify disparate hypotheses in the origin of cellular life?” Curr. Opin. Colloid Interface Sci. 52, 101415 (2021).

Gilbert, W. “Origin of Life - the RNA World.” Nature, 319, 618–618. (1986).

Grafmüller, A., Shillcock, J. & Lipowsky, R. “The fusion of membranes and vesicles: Pathway and energy barriers from dissipative particle dynamics.” Biophys. J. 96, 2658–2675 (2009).

Griesemer, J. “The enduring value of Gánti׳s chemoton model and life criteria: Heuristic pursuit of exact theoretical biology.”, Journal of theoretical biology, 381, 23-28 (2015).

Grillo, I., Levitz, P. & Zemb, T. “Insertion of small anionic particles in negatively charged lamellar phases.”, Langmuir, 16, 4830–4839 (2000).

Grillo, I., Kats, E. I. & Muratov, A. R. “Formation and Growth of Anionic Vesicles Followed by Small-Angle Neutron Scattering Formation and Growth of Anionic Vesicles Followed by SmallAngle Neutron Scattering.”, Langmuir, 19, 4573–4581 (2003).

Guo, Z. et al. “Vesicles as soft templates for the enzymatic polymerization of aniline.”, Langmuir, 25, 11390–11405 (2009).

Guo, Z., Hauser, N., Moreno, A., Ishikawa, T. & Walde, P. “AOT vesicles as templates for the horseradish peroxidase-triggered polymerization of aniline.”, Soft Matter, 7, 180–193 (2011).

Haines, T. H. “Anionic lipid headgroups as a proton-conducting pathway along the surface of

246 membranes: a hypothesis.” Proc. Natl. Acad. Sci. U. S. A. 80, 160–164 (1983).

Haluska, C. K. et al. “Time scale of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution.” Proc. Natl. Acad. Sci. 103, 15841–15846 (2006).

Hamilton, J. A. “Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins.”, Curr. Opin. Lipidol., 14, 263–271 (2003).

Hanczyc, M. M., Fujikawa, S. M., & Szostak, J. W. “Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division.”, Science, 302, 618–622 (2003).

Hanczyc, M. M. & Monnard, P. A. “The origin of life and the potential role of soaps.” Lipid Technol. 28, 88–92 (2016).

Hardy, M. D. et al. “Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth.” Proc. Natl. Acad. Sci. 112, 8187–8192 (2015).

Hayden, E. J., von Kiedrowski, G. & Lehman, N. “Systems Chemistry on Ribozyme SelfConstruction: Evidence for Anabolic Autocatalysis in a Recombination Network.” Angew. Chemie 120, 8552–8556 (2008).

Hengen, P. N., Bartram, S. L., Stewart, L. E. & Schneider, T. D. “Information analysis of Fis binding sites.”, Nucleic Acids Res. 25, 4994–5002 (1997).

Heinrich, V., Svetina, S. & Ek, B. “Nonaxisymmetric vesicle shapes in a generalized bilayercouple model and the transition between oblate and prolate axisymmetric shapes.”, Phys. Rev. E, 48, 3112–3123 (1993).

Helfrich, W. “Elastic properties of lipid bilayers: theory and possible experiments.”, Zeitschrift für Naturforschung c, 28, 693-703 (1973).

Helfrich, W. and Harbich, W. In “Physics of Amphiphilic Layers”, Springer, Berlin (1987).

Helfrich, W. In “Giant Vesicles”, Luisi, P.L. and Walde, P. Eds., John Wiley & Sons, Chichester(2000).

Heuvingh, J., Pincet, F. & Cribier, S. “Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance.” Eur. Phys. J. E 14, 269–276 (2004).

Higgs, P.G. and Lehman N. “The RNA World: molecular cooperation at the origins of life.” Nature Reviews Genetics, 16, 7 – 17. (2015).

Hordijk, W. & Steel, M. “Detecting autocatalytic, self-sustaining sets in chemical reaction systems.” J. Theor. Biol. 227, 451–461 (2004).

Hu, M., Briguglio, J. J. & Deserno, M. “Determining the Gaussian curvature modulus of lipid membranes in simulations.”, Biophys. J., 102, 1403–1410 (2012).

Huang, W. S. & MacDiarmid, A. G. “Optical properties of polyaniline.”, Polymer, 34, 1833–1845(1993).

Hutchison, C. A. et al. “Design and synthesis of a minimal bacterial genome.”, Science, 351, aad6253 (2016).

Ikari, K. et al. “Dynamics of fatty acid vesicles in response to pH stimuli.” Soft Matter 11, 6327–6334 (2015).

Ikkala, O. “Functional Materials Based on Self-Assembly of Polymeric Supramolecules.”, Science., 295, 2407 (2010).

Imai, M. & Walde, P. In The Giant Vesicle Book, R. Dimova, and C. Marques, Eds., CRC Press, Boca Raton, (2019).

International Human Genome Sequencing Consortium, “Initial sequencing and analysis of the human genome”, Nature, 409, 860-921 (2001).

Israelachvili, J.N. “Intermolecular and surface forces” 3rd ed., Elsevier Inc., (2011).

Ivanov, I. et al. “Directed Growth of Biomimetic Microcompartments.” Adv. Biosyst. 3, 1–9(2019).

Iwasaki, F., Luginbühl, S., Suga, K., Walde, P. & Umakoshi, H. “Fluorescent Probe Study of AOT Vesicle Membranes and Their Alteration upon Addition of Aniline or the Aniline Dimer p-248 Aminodiphenylamine (PADPA).”, Langmuir, 33, 1984–1994 (2017).

Jahn, R. & Grubmüller, H. “Membrane fusion.” Curr. Opin. Cell Biol. 14, 488–495 (2002).

Jimbo, T., Sakuma, Y., Urakami, N., Ziherl, P. & Imai, M. “Role of Inverse-Cone-Shape Lipids in Temperature-Controlled Self-Reproduction of Binary Vesicles.”, Biophys. J., 110, 1551–1562 (2016).

Job, D. & Dundord, H. B. “Substituent Effect on the Oxidation of Phenols and Aromatic Amines by Horseradish Peroxidase Compound I.”, Eur. J. Biochem., 66, 607–614 (1976).

Johnston, W.K., Unrau, P.J., Lawrence, M.S., Glasner, M.E., and Bartel, D.P. “RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension.” Science, 292, 1319–1325 (2001).

Joshi, M. P., Sawant, A. A. & Rajamani, S. “Spontaneous emergence of membrane-forming protoamphiphiles from a lipid-amino acid mixture under wet-dry cycles.” Chem. Sci. 12, 2970–2978 (2021).

Joyce, G. F. & Szostak, J. W. “Protocells and RNA self-replication.” Cold Spring Harb. Perspect. Biol. 10, a034801 (2018).

Junker, K. et al. “Mechanistic aspects of the horseradish peroxidase-catalysed polymerisation of aniline in the presence of AOT vesicles as templates.”, RSC Adv., 2, 6478–6495 (2012).

Junker, K., Gitsov, I., Quade, N. & Walde, P. “Preparation of aqueous polyaniline-vesicle suspensions with class III peroxidases. Comparison between horseradish peroxidase isoenzyme C and soybean peroxidase.”, Chem. Pap., 67, 1028–1047 (2013).

Junker, K. et al. “Efficient polymerization of the aniline dimer p -aminodiphenylamine (PADPA) with trametes versicolor laccase/O2 as catalyst and oxidant and AOT vesicles as templates.”, ACS Catal., 4, 3421–3434 (2014).

Junker, K., Zandomeneghi, G., Schuler, L. D., Kissner, R. & Walde, P. “Enzymatic polymerization of pyrrole with Trametes versicolor laccase and dioxygen in the presence of vesicles formed from AOT (sodium bis-(2-ethylhexyl) sulfosuccinate) as templates.”, Synth. Met., 200, 123–134 (2015).

Kaasgaard, T., Mouritsen, O. G. & Jørgensen, K. “Freeze/thaw effects on lipid-bilayer vesicles investigated by differential scanning calorimetry.”, Biochim. Biophys. Acta - Biomembr., 1615, 77–83 (2003).

Kamal, M. M., Mills, D., Grzybek, M. & Howard, J. “Measurement of the membrane curvature preference of phospholipids reveals only weak coupling between lipid shape and leaflet curvature.”, Proc. Natl. Acad. Sci., 106, 22245–22250 (2009).

Karafiloglou, P. & Launay, J. P. “Electron pair (De)coupling in aniline radical cation and its implications for organic ‘mixed valence’ systems.”, J. Phys. Chem. A, 102, 8004–8012 (1998).

Kauffman, S. A. “Autocatalytic sets of proteins.”, J. Theor. Biol., 119, 1–24 (1986).

Kauffman, S. & Levin, S. “Towards a General Theory of Adaptive Walks on Rugged Landscapes.” J. Theor. Biol. 128, 11–45 (1987).

Kauffman, S. A. & Weinberger, E. D. “The NK model of rugged fitness landscapes and its application to maturation of the immune response.” J. Theor. Biol. 141, 211–245 (1989).

Kauffman, S. A. “Origins of Order: Self Organization and Selection in Evolution”, Oxford University Press, New York (1993).

Kaneko, K. & Yomo, T. “On a kinetic origin of heredity: Minority control in a replicating system with mutually catalytic molecules.”, J. Theor. Biol., 214, 563–576 (2002).

Kaneko, K. (⾦⼦邦彦) “普遍⽣物学”, 東京⼤学出版会, (2019). (Japanese edition only)

Kashima, K. et al. “How experimental details matter. The case of a laccase-catalysed oligomerisation reaction.”, RSC Adv., 8, 33229–33242 (2018).

Kim, S. C., Sandman, D., Kumar, J., Bruno, F. F. & Samuelson, L. A. “Self-doped polyaniline/poly (diallyldimethyl ammonium chloride) complex: N-type doping with high stability.”, Chem. Mater. 18, 2201–2204 (2006).

Kim, S. C. et al. “Template-assisted synthesis of self-doped polyaniline: Morphological effects of templates on the conductivity.”, Macromol. Rapid Commun., 28, 1356–1360 (2007).

Kim, S. C. et al. “A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2′-Deoxynucleotides.” J. Am. Chem. Soc. 142, 2317–2326 (2020).

Kim, S. C., O’Flaherty, D. K., Giurgiu, C., Zhou, L. & Szostak, J. W. “The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis.” J. Am. Chem. Soc. 143, 3267–3279 (2021).

Kolasinski, K. W. “Surface Science: Foundations of Catalysis and Nanoscience”, 3rd ed., John Wiley & Sons, 2012.

Koonin, E. V. “How many genes can make a cell: The Minimal-Gene-Set Concept.”, Annu. Rev. Genomics Hum. Genet.,01, 99–116 (2000).

Kreysing, M., Keil, L., Lanzmich, S. & Braun, D. “Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length.” Nat. Chem. 7, 203–208 (2015).

Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., & Cech, T. R. “Selfsplicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena.” Cell, 31, 147-157 (1982).

Kuipers, E. W., Vardi, A., Danon, A., & Amirav, A. “Surface-Molecule Proton Transfer: A Demonstration of the Eley-Rideal Mechanism”, Phys. Rev. Lett., 66, 116-119 (1991).

Kurihara, K. et al. “Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA.” Nat. Chem. 3, 775–781 (2011).

Kurihara, K. et al. “A recursive vesicle-based model protocell with a primitive model cell cycle.” Nat. Commun. 6: 8352 (2015).

Kurisu, M. et al. “Reproduction of vesicles coupled with a vesicle surface-confined enzymatic polymerisation.”, Commun. Chem., 2:117 (2019).

Kurisu, M., Kissner, R., Imai, M. & Walde, P. “Application of an enzymatic cascade reaction for the synthesis of the emeraldine salt form of polyaniline.”, Chem. Pap., 75, 5071–5085 (2021).

Kuruma, Y., Stano, P., Ueda, T. & Luisi, P. L. “A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells.” Biochim. Biophys. Acta - Biomembr. 1788, 567–574 (2009).

Kuzmin, P. I., Zimmerberg, J., Chizmadzhev, Y. A. & Cohen, F. S. “A quantitative model for membrane fusion based on low-energy intermediates.” Proc. Natl. Acad. Sci. U. S. A. 98, 7235–7240 (2001).

Lancet, D., Zidovetzki, R. & Markovitch, O. Systems protobiology: Origin of life in lipid catalytic networks. J. R. Soc. Interface 15: 20180159 (2018).

Landau, L. D., Lifshitz, E. M., Kosevich, A. M., & Pitaevski, L. P. “Theory of Elasticity”, 3rd ed. Elsevier, New York (1986).

Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. “Ribozyme-catalyzed tRNA aminoacylation.” Nat. Struct. Biol. 7, 28–33 (2000).

Leskovac, V., Trivić, S., Wohlfahrt, G., Kandrač, J. & Peričin, D. “Glucose oxidase from Aspergillus niger: The mechanism of action with molecular oxygen, quinones, and one-electron acceptors.”, Int. J. Biochem. Cell Biol., 37, 731–750 (2005).

Leslie E, O. “Prebiotic chemistry and the origin of the RNA world.”, Critical reviews in biochemistry and molecular biology, 39, 99-123. (2004).

Letelier, J. C., Cárdenas, M. L. & Cornish-Bowden, A. “From L’Homme Machine to metabolic closure: Steps towards understanding life.”, J. Theor. Biol., 286, 100–113 (2011).

Lira, R. B., Robinson, T., Dimova, R. & Riske, K. A. “Highly Efficient Protein-free Membrane Fusion: A Giant Vesicle Study.” Biophys. J. 116, 79–91 (2019).

Lincoln, T.A., and Joyce, G.F. “Self-sustained replication of an RNA enzyme.” Science, 323, 1229–1232 (2009).

Lipowsky, R. In “The Giant Vesicle Book”, R. Dimova, and C. Marques, Eds., CRC Press, Taylor & Francis: Boca Raton (2020).

Liu, J. M., Sun, L., Hwang, J.-H. & Yang, S. C. “Novel template guided synthesis of polyaniline.”, Mat. Res. Soc. Symp. Proc., 247, 601–606 (1992).

Liu, W., et al. (1999). (a) “Enzymatically synthesized conducting polyaniline.”, J. Am. Chem. Soc., 121,71–78. (b) “The role of template in the enzymatic synthesis of conducting polyaniline.”, J. Am. Chem. Soc., 121, 11345–11355.

Liu, Z. et al. “In Vitro Reconstitution and Optimization of the Entire Pathway to Convert Glucose into Fatty Acid.” ACS Synth. Biol. 6, 701–709 (2017).

Liu, Z. et al. “Harnessing chemical energy for the activation and joining of prebiotic building blocks.” Nat. Chem. 12, 3–10 (2020).

Luginbühl, S., Bertschi, L., Willeke, M., Schuler, L. D. & Walde, P. “How anionic vesicles steer the oligomerization of enzymatically oxidized p-aminodiphenylamine (PADPA) toward a polyaniline emeraldine salt (PANI-ES)-type product.” Langmuir, 32, 9765–9779 (2016).

Luginbühl, S. et al. (a) “The influence of anionic vesicles on the oligomerization of p-aminodiphenylamine catalyzed by horseradish peroxidase and hydrogen peroxide.”, Synth. Met., 226,89–103 (2017). (b) “Novel Role of Vesicles as Templates for the Oxidation and Oligomerization of pAminodiphenylamine by Cytochrome c.”, Helv. Chim. Acta, 100, e1700027 (2017).

Luginbühl, S., Ruiz-Mirazo, K., Ostaszewski, R., Gallou, F. & Walde, P. “Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions.” Nat. Rev. Chem., 2, 306–327 (2018).

Mally, M., Peterlin, P. & Svetina, S. “Partitioning of oleic acid into phosphatidylcholine membranes is amplified by strain.”, J. Phys. Chem. B, 117, 12086–12094 (2013).

Manghi, M. & Destainville, N. “Physics of base-pairing dynamics in DNA.”, Phys. Rep., 631, 1–41 (2016).

Mansy, S. S. “Model protocells from single-chain lipids.”, Int. J. Mol. Sci., 10, 835–843 (2009).

Marangoni, A.G. “Enzyme kinetics: a modern approach”, John Wiley & Sons, Inc., USA (2003).

Marsh, D. “Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes.”, Biophys. J. 93, 3884–3899 (2007).

Martin, W., Baross, J., Kelley, D. & Russell, M. J. “Hydrothermal vents and the origin of life.” Nat. Rev. Microbiol. 6, 805–814 (2008).

Matsubara, C., Kawamoto, N. & Takamura, K. “Oxo [5, 10, 15, 20-tetra (4-pyridyl) porphyrinato] titanium(IV): An ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide.”, Analyst, 117, 1781–1784 (1992).

Matsuo, M. et al. “DNA Length-dependent Division of a Giant Vesicle-based Model Protocell.” Sci. Rep. 9, 1–11 (2019).

Matsusaki, M., Ajiro, H., Kida, T., Serizawa, T. & Akashi, M. “Layer-by-layer assembly through weak interactions and their biomedical applications.” Adv. Mater., 24, 454–474 (2012).

Mayor, S., Presley, J. F. & Maxfield, F. R. “Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process.”, J. Cell Biol., 121, 1257–1269 (1993).

Mccollom, T. M., Ritter, G. & Simoneit, B. R. T. “Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.” Orig. Life Evol. Biosph. 29, 153–166 (1999).

Mendel, J.G. "Versuche über Pflanzenhybriden", Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, 1865, Abhandlungen: 3–47 (1866).

Miao, L., Seifert, U., Wortis, M. & Döbereiner, H. G. “Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity.”, Phys. Rev. E, 49, 5389–5407 (1994).

Michal, G. “Roche Biochemical Pathways 4th ed.”, Roche Diacnostics (2014).

Millero, F. J., Huang, F. & Laferiere, A. L. “The solubility of oxygen in the major sea salts and their mixtures at 25°C.”, Geochim. Cosmochim. Acta, 66, 2349–2359 (2002).

Mißbach, H. et al. “Assessing the diversity of lipids formed via Fischer-Tropsch-type reactions.” Org. Geochem. 119, 110–121 (2018).

Moitzi, C., Freiberger, N. & Glatter, O. “Viscoelastic wormlike micellar solutions made from nonionic surfactants: structural investigations by SANS and DLS.”, J. Phys. Chem. B, 109, 16161–16168 (2005).

Monnard, P. A. & Deamer, D. W. “Membrane self-assembly processes: Steps toward the first cellular life.” Anat. Rec. 268, 196–207 (2002).

Morigaki, K., Walde, P., Misran, M. & Robinson, B. H. “Thermodynamic and kinetic stability. Properties of micelles and v esicles formed by the decanoic acid / decanoate system.”, Colloids Surfaces A Physicochem. Eng. Asp., 213, 37–44 (2003).

Morigaki, K. & Walde, P. “Fatty acid vesicles.” Curr. Opin. Colloid Interface Sci. 12, 75–80 (2007).

Morini, M. A. et al. “Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles.” Colloids Surfaces B Biointerfaces 131, 54–58 (2015).

Nabid, M. R. & Entezami, A. A. “Enzymatic synthesis and characterization of a water-soluble, conducting poly(o-toluidine).”, Eur. Polym. J., 39, 1169–1175 (2003).

Nabid, M. R. & Entezami, A. A. “A novel method for synthesis of water-soluble polypyrrole with horseradish peroxidase enzyme.”, J. Appl. Polym. Sci., 94, 254–258 (2004).

Nagarajan, R. et al. “Manipulating DNA conformation using intertwined conducting polymer chains.” Macromolecules, 34, 3921–3927 (2001).

Nakano, M., Fukuda, M., Kudo, T., Endo, H. & Handa, T. “Determination of interbilayer and transbilayer lipid transfers by time-resolved small-angle neutron scattering.”, Phys. Rev. Lett., 98, 30–33 (2007).

Nakagawa, K. M. & Noguchi, H. “Nonuniqueness of local stress of three-body potentials in molecular simulations.” Phys. Rev. E. 94, 1–11 (2016).

Namsheer, K. & Rout, C. S. “Conducting polymers : a comprehensive review on recent advances in synthesis, properties and applications.”, RSC Adv.,11, 5659–5697 (2021).

Nave, S., Eastoe, J. & Penfold, J. “What Is So Special about Aerosol-OT? 1. Aqueous Systems.”, Langmuir, 16, 8733–8740 (2000).

Nekrasov, A.V., Ivanov, V.F., Vannikov, A.V. “Effect of pH on the structure of absorption spectra of highly protonated polyani- line analyzed by the Alentsev−Fock method.”, Electrochim Acta, 46, 4051–4056 (2001).

Neveu, M., Kim, H.-J. & Benner, S. A. The “Strong” RNA World Hypothesis: Fifty Years Old. Astrobiology 13, 391–403 (2013).

Ngola, S. M., Kearney, P. C., Mecozzi, S., Russell, K. & Dougherty, D. A. “A selective receptor for arginine derivatives in aqueous media. Energetic consequences of salt bridges that are highly exposed to water.” J. Am. Chem. Soc., 121, 1192–1201 (1999).

Noireaux, V., Maeda, Y. T. & Libchaber, A. “Development of an artificial cell, from selforganization to computation and self-reproduction.” Proc. Natl. Acad. Sci. 108, 3473–3480(2011).

Noller, H. F. “Evolution of protein synthesis from an RNAworld.” Cold Spring Harb. Perspect. Biol. 4, a003681 (2012).

Noyes, R. M., Field, R. J. & Koros, E. “Oscillations in Chemical Systems. I. Detailed Mechanism in a System Showing Temporal Oscillations.”, J. Am. Chem. Soc., 7315, 1971–1972 (1972).

Pašti, I. et al. “Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles.”, Electrochim. Acta, 258, 834–841 (2017).

Pan, A., Rakshit, S., Sahu, S., Bhattacharya, S. C. & Moulik, S. P. “Synergism between anionic double tail and zwitterionic single tail surfactants in the formation of mixed micelles and vesicles, and use of the micelle templates for the synthesis of nano-structured gold particles.”, Colloids Surfaces A Physicochem. Eng. Asp., 481, 644–654 (2015).

Parker, E. T. et al. “Primordial synthesis of amines and amino acids in a 1958 Miller H 2S-rich spark discharge experiment.” Proc. Natl. Acad. Sci. U. S. A. 108, 5526–5531 (2011).

Pascal, R. & Chen, I. A. “From soup to peptides.” Nat. Chem. 11, 763–764 (2019).

Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. “Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism.” Nat. Chem. 7, 301–307 (2015).

Pauling, L. “The Origin of Life on Earth.” Oparin, A. I. ed. New York: MacMillan, (1938).

Pasti, I. et al. “Superior capacitive properties of polyaniline produced by a one-pot peroxidase / H2O2 -triggered polymerization of aniline in the presence of AOT vesicles”, Electrochimica Acta, 258, 834–841, (2017).

Podolsky, K. A. & Devaraj, N. K. “Synthesis of lipid membranes for artificial cells.” Nat. Rev. Chem. 5, 676–694 (2021).

Połowiński, S. “Template polymerisation and co-polymerisation.”, Prog. Polym. Sci., 27, 537–577 (2002).

Praprotnik, M., Site, L. D. & Kremer, K. “Multiscale simulation of soft matter: From scale bridging to adaptive resolution.” Annu. Rev. Phys. Chem., 59, 545–571 (2008).

Pressman, A., Blanco, C. & Chen, I. A. “The RNA world as a model system to study the origin of life.” Curr. Biol. 25, R953–R963 (2015).

Pressman, A. D. et al. “Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA.” J. Am. Chem. Soc. 141, 6213–6223 (2019).

Rajendiran, N. & Swaminathan, M. “Luminescence characteristics of 4,4’-diaminodiphenyl methane in different solvents and at various pH.”, Spectrochim. Acta Part A, 52, 1785–1792(1996).

Rasmussen, S., Constantinescu, A. & Svaneborg, C. “Generating minimal living systems from non-living materials and increasing their evolutionary abilities.” Philos. Trans. R. Soc. B Biol. Sci.371, (2016).

Reeves, J. P. & Dowben, R. M. “Formation and properties of thin-walled phospholipid vesicles.”, J. Cell. Physiol., 73, 49–60 (1969).

Rettner, C. T. “Dynamics of the Direct Reaction of Hydrogen Atoms Adsorbed on Cu(111) with Hydrogen Atoms Incident from the Gas Phase”, Phys. Rev. Lett., 69, 383-386 (1992).

Reynafarje, B., Costa, L. E. & Lehninger, A. L. “O2 solubility in aqueous media determined by a kinetic method.”, Anal. Biochem., 145, 406–418 (1985).

Rodriguez-Garcia, M. et al. “Formation of oligopeptides in high yield under simple programmable conditions.” Nat. Commun. 6, (2015).

Rowlett, V. W., & Margolin, W. “The Min system and other nucleoid-independent regulators of Z ring positioning.”, Frontiers in Microbiology, 6, 478 (2015).

Rushdi, A. I. & Simoneit, B. R. T. “Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400 °C.” Orig. Life Evol. Biosph. 31, 103–118 (2001).

Sakashita, A., Urakami, N., Ziherl, P. & Imai, M. “Three-dimensional analysis of lipid vesicle transformations.”, Soft Matter, 8, 8569–8581 (2012).

Sakuma, Y., Imai, M., Yanagisawa, M. & Komura, S. “Adhesion of binary giant vesicles containing negative spontaneous curvature lipids induced by phase separation.”, Eur. Phys. J. E, 25, 403–413 (2008).

Sakuma, Y., Taniguchi, T. & Imai, M. “Pore formation in a binary giant vesicle induced by coneshaped lipids.” Biophys. J., 99, 472–479 (2010).

Sakuma, Y. & Imai, M. “Model system of self-reproducing vesicles.” Phys. Rev. Lett., 107, 1–5 (2011).

Sakurada, J., Sekiguchi, R., Sato, K. & Hosoya, T. “Kinetic and Molecular Orbital Studies on the Rate of Oxidation of Monosubstituted Phenols and Anilines by Horseradish Peroxidase Compound II.”, J. Biol. Phys., 29, 4093–4098 (1990).

Samuelson, L. A., Anagnostopoulos, A., Alva, K. S., Kumar, J. & Tripathy, S. K. “Biologically Derived Conducting and Water Soluble Polyaniline.”, Macromolecules 31, 4376–4378 (1998).

Sapurina, I., Riede, A. & Stejskal, J. “In-situ polymerized polyaniline films - 3. Film formation.”, Synth. Met., 123, 503–507 (2001).

Schmidli, P. K., Schurtenberger, P. & Luisi, P. L. “Liposome-Mediated Enzymatic.” 113, 8127–8130 (1991).

Schneider, H. J., Schiestel, T. & Zimmermann, P. “The Incremental Approach to Noncovalent Interactions: Coulomb and van der Waals Effects in Organic Ion Pairs.”, J. Am. Chem. Soc., 114, 7698–7703 (1992).

Schneider, T. D. “A brief review of molecular information theory.”, Nano Commun. Netw. 1, 173– 180 (2010).

Schrödinger, E. “What Is Life? The Physical Aspect of the Living Cell.”, Cambridge University Press, UK, (1944).

Schwille, P. et al. “MaxSynBio: Avenues Towards Creating Cells from the Bottom Up.” Angew. Chemie - Int. Ed. 57, 13382–13392 (2018).

Scott, A. et al. “Cell-free phospholipid biosynthesis by gene-encoded enzymes reconstituted in liposomes.” PLoS One 11, 1–23 (2016).

Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. Orig. Life Evol. Biosph., 2001, 31, 119-145.

Seifert, U., Berndl, K. & Lipowsky, R. “Shape transformations of vesicles: Phase diagram for spontaneouscurvature and bilayer-coupling models.”, Phys. Rev. A, 44, 1182–1202 (1991).

Seifert, U., Miao, L., Döbereiner, H.-G. & Wortis, M. “Budding Transition for Bilayer Fluid Vesicles with Area-Difference Elasticity.”, Springer Proc. Phys., 66, 93–96 (1992).

Seifert, U. “Configurations of fluid membranes and vesicles.”, Adv. Phys., 46, 13–137 (1997).

Serizawa, T., Hamada, K. & Akashi, M. “Polymerization within a molecular-scale stereoregular template.” Nature, 429, 52–55 (2004).

Shillcock, J. C. & Lipowsky, R. “Tension-induced fusion of bilayer membranes and vesicles.” Nat. Mater. 4, 225–228 (2005).

Shimizu, Y. et al. “Supplemental Material for ‘Cell-free translation reconstituted with purified components.” Nat. Biotechnol. 19, 751–755 (2001).

Siegel, D. P. & Kozlov, M. M. “The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: Relevance to membrane fusion and lipid phase behavior.”, Biophys. J., 87, 366–374 (2004).

Smith, R. & Tanford, C. “Hydrophobicity of Long Chain n-Alkyl Carboxylic Acids, as Measured by Their Distribution Between Heptane and Aqueous Solutions.” Proc. Natl. Acad. Sci. 70, 289–293 (1973).

Socrates, G. “Infrared and Raman Characteristic Group Frequencies”, John Wiley & Sons, New York, p. 220 (2001).

Stampfl, C., & Scheffler, M. “Anomalous Behavior of Ru for Catalytic Oxidation: A Theoretical

Study of the Catalytic Reaction CO + 1/2 O2 → CO2.”, Phys. Rev. Lett., 78, 1500-1503 (1997).

Stano, P. & Luisi, P. L. “Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells.” Chem. Commun. 46, 3639–3653 (2010).

Stano, P., Carrara, P., Kuruma, Y., Pereira De Souza, T. & Luisi, P. L. “Compartmentalized reactions as a case of soft-matter biotechnology: Synthesis of proteins and nucleic acids inside lipid vesicles.” J. Mater. Chem. 21, 18887–18902 (2011).

Stelzl, U. et al. “A human protein-protein interaction network: A resource for annotating the proteome.”, Cell, 122, 957–968 (2005).

Steinkühler, J. et al. “Controlled division of cell-sized vesicles by low densities of membranebound proteins.” Nat. Commun., 11: 905 (2020).

Stella, S., Cascio, D. & Johnson, R. C. “The shape of the DNA minor groove directs binding by the DNA-bending protein Fis.”, Genes Dev. 24, 814–826 (2010).

Sun, L., Liu, H., Clark, R. & Yang, S. “Double-strand polyaniline.” Synth. Met., 84, 67–68 (1997).

Sun, L., Cui, Z., Gottlieb, R. L. & Zhang, B. “A selected ribozyme catalyzing diverse dipeptide synthesis.” Chem. Biol. 9, 619–628 (2002).

Sunami, T. et al. “Detection of association and fusion of giant vesicles using a fluorescenceactivated cell sorter.” Langmuir 26, 15098–15103 (2010).

Suzuki, K., Aboshi, R., Kurihara, K. & Sugawara, T. “Adhesion and fusion of two kinds of phospholipid hybrid vesicles controlled by surface charges of vesicular membranes.” Chem. Lett. 41, 789–791 (2012).

Swoboda, B.E.P. & Massey, V. “Purification and properties of the glucose oxidase from Aspergillus niger.”, J. Biol. Chem., 240, 2209–2215 (1965).

Szostak, J. W., Bartel, D. P. & Luisi, P. L. “Synthesizing life.” Nature, 409, 387–390 (2001).

Takamura, K. & Matsubara, C. “Versatility of the Titanium(IV)–Porphyrin Reagent for Determining Hydrogen Peroxide.”, Bull. Chem. Soc. Jpn., 76, 1873–1888 (2003).

Takamura, K. & Matsumoto, T. “Ultraviolet–Visible Spectral Analysis for the Reaction of Hydrogen Peroxide with a Titanium(IV)-Porphyrin Reagent”, Appl. Spectrosc., 63, 579–584(2009).

Takakura, K., Toyota, T. & Sugawara, T. “A novel system of self-reproducing giant vesicles.” J. Am. Chem. Soc. 125, 8134–8140 (2003).

Takakura, K., & Sugawara, T. “Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system.” Langmuir, 20, 3832–3834, (2004).

Tanaka, H. (⽥中博) “⽣命と複雑系”, 培⾵館, (2002). (Japanese edition only)

Tanaka, T., Sano, R., Yamagami, A. & Yamazaki, M. “Membrane fusion of giant liposomes of neutral phospholipid membranes induced by La3+ and Gd3+.” AIP Conf. Proc. 708, 316–317(2004).

Tamm, L. K., Crane, J. & Kiessling, V. Membrane fusion: A structural perspective on the interplay of lipids and proteins. Curr. Opin. Struct. Biol. 13, 453–466 (2003).

Tatulian, S. A. “Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes.” BBA - Biomembr. 736, 189–195 (1983).

Tian, A. & Baumgart, T. “Sorting of lipids and proteins in membrane curvature gradients.”, Biophys. J., 96, 2676–2688 (2009).

Toyobo Enzymes, Product Information, “PEO-131・301・302 PEROXIDASE from Horseradish” https://www.toyobo-global.com/seihin/xr/enzyme/pdf_files/201707/PEO_131_301_302.pdf

Toyota, T., Takakura, K., Kageyama, Y., Kurihara, K., Maru, N., Ohnuma, K., Kaneko, K., Sugawara, T. “Population study of sizes and components of self-reproducing giant multilamellar vesicles.” Langmuir, 24: 3037–3044 (2008).

Traïkia, M., Warschawski, D. E., Recouvreur, M., Cartaud, J. & Devaux, P. F. “Formation of unilamellar vesicles by repetitive freeze-thaw cycles: Characterization by electron microscopy and 31P-nuclear magnetic resonance.”, Eur. Biophys. J., 29, 184–195 (2000).

Tominaga, K. (富永慶伊) “反応速度論” 3rd ed., 東京化学同⼈, 2001.

Toyabe, S. & Braun, D. “Cooperative Ligation Breaks Sequence Symmetry and Stabilizes Early Molecular Replication.” Phys. Rev. X, 9, 11056 (2019).

Tsai, M. Y., Zhang, B., Zheng, W. & Wolynes, P. G. “Molecular Mechanism of Facilitated Dissociation of Fis Protein from DNA.”, J. Am. Chem. Soc. 138, 13497–13500 (2016).

Urakami, N., Jimbo, T., Sakuma, Y. & Imai, M. “Molecular mechanism of vesicle division induced by coupling between lipid geometry and membrane curvatures.”, Soft Matter, 14, 3018–3027 (2018).

Urakami, N., Sakuma, Y., Chiba, T. & Imai, M. “Vesicle deformation and division induced by flip-flops of lipid molecules.” Soft Matter, 17, 8434-8445 (2021).

Vance, J. A. & Devaraj, N. K. “Membrane Mimetic Chemistry in Artificial Cells.” J. Am. Chem. Soc. 143, 8223–8231 (2021).

Vasas, V., Fernando, C., Santos, M., Kauffman, S. & Szathmáry, E. “Evolution before genes.”, Biol. Direct, 7, 1–14 (2012).

van der Gulik, P., Massar, S., Gilis, D., Buhrman, H. & Rooman, M. “The first peptides: The evolutionary transition between prebiotic amino acids and early proteins.” J. Theor. Biol. 261,531–539 (2009).

Venter J. C. et al. “The sequence of the human genome”, Science, 291, 1304-1351 (2001).

Von Neumann, J., In The Hixon Symposium, Jeffress, L.A. Ed., Wiley, New York (1951).

Walde, P., Wick, R., Fresta, M., Mangone, A., & Luisi, P. L. “Autopoietic Self-Reproduction of Fatty Acid Vesicles.”, Journal of the American Chemical Society, 116, 11649–11654 (1994).

Walde, P. “Surfactant assemblies and their various possible roles for the origin(s) of life.” Origins of Life and Evolution of the Biosphere 36, 109 – 150 (2006).

Walde, P., Umakoshi, H., Stano, P. & Mavelli, F. “Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators.” Chem. Commun. 50, 10177–10197 (2014).

Wallace, G.G., Spinks, G.M., Kane-Maguire, L.A.P., Tesdale, P.R. “Conductive electroactive polymers, Intelligent polymer systems”, 3rd edn. CRC Press, Boca Raton, pp 179–196, (2009).

Wang, P., Meyer, T. A., Pan, V., Dutta, P. K. & Ke, Y. “The Beauty and Utility of DNA Origami.”, Chem, 2, 359–382 (2017).

Wang, Z. G., Zhan, P. & Ding, B. “Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.” ACS Nano, 7, 1591–1598 (2013).

Waugh, R. E., Song, J., Svetina, S. & Zeks, B. “Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles.”, Biophys. J., 61, 974–982 (1992).

Wächtershäuser, G. “Before Enzymes and Templates: Theory of Surface Metabolism.” 52, 452–484 (1988).

Weibel, M. K. & Bright, H. J. “The glucose oxidase mechanism. Interpretation of the pH dependence.”, J. Biol. Chem., 246, 2734–2744 (1971).

Weiss, D. S. “Bacterial cell division and the septal ring.”, Mol. Microbiol. 54, 588–597 (2004).

Wick, R., Walde, P. & Luisi, P. L. “Light Microscopic Investigations of the Autocatalytic SelfReproduction of Giant Vesicles.” J. Am. Chem. Soc. 117, 1435–1436 (1995).

Wiese, W., Harbich, W. & Helfrich, W. “Budding of lipid bilayer vesicles and flat membranes.”, J. Phys. Condens. Matter, 4, 1647–1657 (1992).

World Book Encyclopedia., "Life.", Chicago: World Book, 1983.

Wu, Q., Xue, Z., Qi, Z. & Wang, F. “Synthesis and characterization of PAn/clay nanocomposite with extended chain conformation of polyaniline.”, Polymer., 41, 2029–2032 (2000).

Xavier, J. C., Hordijk, W., Kauffman, S., Steel, M., & Martin, W. F. “Autocatalytic chemical networks at the origin of metabolism.”, Proc. R. Soc. B, 287: 20192377 (2020).

Xu, P. et al. “Genome-wide essential gene identification in Streptococcus sanguinis.” Sci. Rep., 1, 1–9 (2011).

Yu, X., Liu, T., Zhu, F. & Khosla, C. “In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli.” Proc. Natl. Acad. Sci. U. S. A. 108, 18643–18648 (2011).

Zhu, T. F., & Szostak, J. W. “Coupled growth and division of model protocell membranes.”, Journal of the American Chemical Society, 131, 5705–5713 (2009).

Zubay, G. “Origins of Life on the Earth and in the Cosmos”, Academic Press, San Diego (2000).

Zuckerman, D. M. “Statistical physics of biomolecules: an introduction.”, CRC press (2010).

参考文献をもっと見る