リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sub-nanometric High-Entropy Alloy Cluster: Hydrogen Spillover Driven Synthesis on CeO2 and Structural Reversibility」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sub-nanometric High-Entropy Alloy Cluster: Hydrogen Spillover Driven Synthesis on CeO2 and Structural Reversibility

Hashimoto, Naoki 大阪大学

2023.07.18

概要

High-entropy alloys (HEAs) have attracted much attention in
various fields with regard to applications as structural
materials,1 biomaterials,2 supercapacitors,3 and catalysts.4,5
HEAs comprise mixtures of five or more metallic elements at
near equiatomic ratios and form simple single solid-solution
phases having lattice structures including face-centered cubic
(fcc) and body-centered cubic (bcc).6,7 The high configurational entropy of these alloys stabilizes the solid-solution phase
such that this phase appears rather than an intermetallic phase
or phase segregation.8,9 The severe lattice distortion in these
materials that results from differences in the atomic sizes of the
constituent elements also causes low atomic diffusivity.10 The
unique synergistic effects resulting from combining multiple
elements provide high specific strength, ductility, corrosion
resistance, and thermal stability, such that HEAs are unique
and fascinating materials. In recent years, many researchers
have reported that HEA nanoparticles (NPs) having sizes on
the nanometer scale (that is, in the range of 1 to 100 nm) show
promise with regard to catalytic applications. Various
techniques for the synthesis of such NPs have been developed,
including those based on the use of carbothermal shock,9,11,12
microwave radiation,13 ultrasonication,14 fast moving bed
pyrolysis,15 and continuous flow reactors.16,17 Each of these
processes is capable of fabricating thoroughly mixed HEA NPs
© 2023 The Authors. ...

この論文で使われている画像

参考文献

(1) Lim, K. R.; Lee, K. S.; Lee, J. S.; Kim, J. Y.; Chang, H. J.; Na, Y.

S. Dual-phase high-entropy alloys for high-temperature structural

applications. J. Alloys Compd. 2017, 728, 1235−1238.

(2) Hori, T.; Nagase, T.; Todai, M.; Matsugaki, A.; Nakano, T.

Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys

for metallic biomaterials. Scr. Mater. 2019, 172, 83−87.

(3) Xu, X.; Du, Y. K.; Wang, C. H.; Guo, Y.; Zou, J. W.; Zhou, K.;

Zeng, Z.; Liu, Y. Y.; Li, L. Q. High-entropy alloy nanoparticles on

aligned electronspun carbon nanofibers for supercapacitors. J. Alloys

Compd. 2020, 822, No. 153642.

(4) Feng, G.; Ning, F.; Song, J.; Shang, H.; Zhang, K.; Ding, Z.; Gao,

P.; Chu, W.; Xia, D. Sub - 2 nm Ultrasmall High-Entropy Alloy

Nanoparticles for Extremely Superior Electrocatalytic Hydrogen

Evolution. J. Am. Chem. Soc. 2021, 143, 17117−17127.

(5) Wu, D.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura,

S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-Group-Metal

High-Entropy-Alloy Nanoparticles. J. Am. Chem. Soc. 2020, 142,

13833−13838.

(6) Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B.

Microstructural development in equiatomic multicomponent alloys.

Mater. Sci. Eng., A 2004, 375−377, 213−218.

(7) Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T.

T.; Tsau, C. H.; Chang, S. Y. Nanostructured High-Entropy Alloys

with Multiple Principal Elements: Novel Alloy Design Concepts and

Outcomes. Adv. Eng. Mater. 2004, 6, 299−303.

(8) Yao, Y.; Huang, Z.; Hughes, L. A.; Gao, J.; Li, T.; Morris, D.;

Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z.; Dong, Q.;

Jiao, M.; Mao, Y.; Chi, M.; Zhang, P.; Li, J.; Minor, A. M.;

Shahbazian-Yassar, R.; Hu, L. Extreme mixing in nanoscale transition

metal alloys. Matter 2021, 4, 2340−2353.

(9) Xie, P.; Yao, Y.; Huang, Z.; Liu, Z.; Zhang, J.; Li, T.; Wang, G.;

Shahbazian-Yassar, R.; Hu, L.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun.

2019, 10, 4011.

(10) Joo, S. H.; Bae, J. W.; Park, W. Y.; Shimada, Y.; Wada, T.; Kim,

H. S.; Takeuchi, A.; Konno, T. J.; Kato, H.; Okulov, I. V. Beating

Thermal Coarsening in Nanoporous Materials via High-Entropy

Design. Adv. Mater. 2019, 32, No. 1906160.

(11) Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.;

Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M.; Yu, D. W.;

Zachariah, M. R.; Wang, C.; Shahbazian-Yassar, R.; Li, J.; Hu, L. B.

Carbothermal shock synthesis of high-entropy-alloy nanoparticles.

Science 2018, 359, 1489−1494.

(12) Yao, Y.; Liu, Z.; Xie, P.; Huang, Z.; Li, T.; Morris, D.; Finfrock,

Z.; Zhou, J.; Jiao, M.; Gao, J.; Mao, Y.; Miao, J.; Zhang, P.;

Shahbazian-Yassar, R.; Wang, C.; Wang, G.; Hu, L. Computationally

aided, entropy-driven synthesis of highly efficient and durable multielemental alloy catalysts. Sci. Adv. 2020, 6, No. eaaz0510.

(13) Qiao, H.; Saray, M. T.; Wang, X.; Xu, S.; Chen, G.; Huang, Z.;

Chen, C.; Zhong, G.; Dong, Q.; Hong, M.; Xie, H.; ShahbazianYassar, R.; Hu, L. Scalable Synthesis of High Entropy Alloy

Nanoparticles by Microwave Heating. ACS Nano 2021, 15, 14928−

14937.

(14) Liu, M.; Zhang, Z.; Okejiri, F.; Yang, S.-Z.; Zhou, S.; Dai, S.

Entropy-Maximized Synthesis of Multimetallic Nanoparticle Catalysts

via a Ultrasonication-Assisted Wet Chemistry Method under Ambient

Conditions. Adv. Mater. Interfaces 2019, 6, No. 1900015.

(15) Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang,

X.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy

nanoparticles on supports by the fast moving bed pyrolysis. Nat.

Commun. 2020, 11, 2016.

(16) Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Sato,

K.; Nagaoka, K.; Terada, K.; Ikeda, Y.; Hirai, Y.; Kitagawa, H.

Nonequilibrium Flow-Synthesis of Solid-Solution Alloy Nanoparticles: From Immiscible Binary to High-Entropy Alloys. J. Phys. Chem.

C 2021, 125, 458−463.

(17) Minamihara, H.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama,

T.; Matsumura, S.; Kumara, L. S. R.; Ohara, K.; Sakata, O.;

Authors

Naoki Hashimoto − Division of Materials and Manufacturing

Science, Graduate School of Engineering, Osaka University,

Suita, Osaka 565-0871, Japan

Shuichiro Matsuzaki − Division of Materials and

Manufacturing Science, Graduate School of Engineering,

Osaka University, Suita, Osaka 565-0871, Japan

Kazuki Iwama − Division of Materials and Manufacturing

Science, Graduate School of Engineering, Osaka University,

Suita, Osaka 565-0871, Japan

Ryota Kitaura − Division of Materials and Manufacturing

Science, Graduate School of Engineering, Osaka University,

Suita, Osaka 565-0871, Japan

Naoto Kamiuchi − The Institute of Scientific and Industrial

Research, Osaka University, Osaka 567-0047, Japan;

orcid.org/0000-0002-4145-5226

Hideto Yoshida − The Institute of Scientific and Industrial

Research, Osaka University, Osaka 567-0047, Japan

Hiromi Yamashita − Division of Materials and Manufacturing

Science, Graduate School of Engineering, Osaka University,

Suita, Osaka 565-0871, Japan; Innovative Catalysis Science

Division, Institute for Open and Transdisciplinary Research

Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 5650871, Japan

Complete contact information is available at:

https://pubs.acs.org/10.1021/jacsau.3c00210

Author Contributions

N.H. performed the catalyst preparation, calculation, and

characterization, and wrote the manuscript. K.M. supervised

the project. S.M., K.I., and R.K. helped with the catalyst

preparation and characterization. N.K. and H.Y. performed the

HAADF-STEM and EDX measurements. H.Y. helped to

supervise the project. The manuscript was written through

discussions with all authors. All authors have given approval to

the final version of the manuscript. CRediT: Naoki

Hashimoto investigation, writing-original draft; Kohsuke

Mori investigation, supervision, writing-review & editing;

Shuichiro Matsuzaki investigation; Kazuki Iwama investigation; Ryota Kitaura investigation; Naoto Kamiuchi investigation; Hideto Yoshida investigation; Hiromi Yamashita

supervision.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The present work was supported by the Kakenhi Grant-in-Aid

for Transformative Research Areas(B) (No. 21B206). N.H.

thanks JSPS for a Research Fellowship for Young Scientists

(No. 22J20599). We acknowledge Hitachi High-Technologies

Corporation for their assistance with the Cs-corrected SEM

measurements (HF 5000). A part of TEM experiment was

carried out by using a facility in the Research Center for UltraHigh Voltage Electron Microscopy, Osaka University. The

synchrotron radiation experiments for XAFS measurements

were performed at the BL01B1 beamline in SPring-8 with the

approval from JASRI (2022A1076 and 2021B1096).

2141

https://doi.org/10.1021/jacsau.3c00210

JACS Au 2023, 3, 2131−2143

JACS Au

pubs.acs.org/jacsau

Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Continuous-Flow Reactor

Synthesis for Homogeneous 1 nm-Sized Extremely Small HighEntropy Alloy Nanoparticles. J. Am. Chem. Soc. 2022, 144, 11525−

11529.

(18) Konda, S. K.; Chen, A. Palladium based nanomaterials for

enhanced hydrogen spillover and storage. Mater. Today 2016, 19,

100−108.

(19) Collins, S. S. E.; Cittadini, M.; Pecharromán, C.; Martucci, A.;

Mulvaney, P. Hydrogen Spillover between Single Gold Nanorods and

Metal Oxide Supports: A Surface Plasmon Spectroscopy Study. ACS

Nano 2015, 9, 7846−7856.

(20) Hülsey, M. J.; Fung, V.; Hou, X.; Wu, J.; Yan, N. Hydrogen

Spillover and Its Relation to Hydrogenation: Observations on

Structurally Defined Single-Atom Sites. Angew. Chem., Int. Ed. 2022,

61, No. e202208237.

(21) Im, J.; Shin, H.; Jang, H.; Kim, H.; Choi, M. Maximizing the

catalytic function of hydrogen spillover in platinum-encapsulated

aluminosilicates with controlled nanostructures. Nat. Commun. 2014,

5, 3370.

(22) Prins, R. Hydrogen Spillover Facts and Fiction. Chem. Rev.

2012, 112, 2714−2738.

(23) Mori, K.; Miyawaki, K.; Yamashita, H. Ru and Ru−Ni

Nanoparticles on TiO 2 Support as Extremely Active Catalysts for

Hydrogen Production from Ammonia−Borane. ACS Catal. 2016, 6,

3128−3135.

(24) Masuda, S.; Mori, K.; Sano, T.; Miyawaki, K.; Chiang, W. H.;

Yamashita, H. Simple Route for the Synthesis of Highly Active

Bimetallic Nanoparticle Catalysts with Immiscible Ru and Ni

Combination by utilizing a TiO2 Support. ChemCatChem 2018, 10,

3526−3531.

(25) Masuda, S.; Shun, K.; Mori, K.; Kuwahara, Y.; Yamashita, H.

Synthesis of a binary alloy nanoparticle catalyst with an immiscible

combination of Rh and Cu assisted by hydrogen spillover on a TiO2

support. Chem. Sci. 2020, 22, 4194−4203.

(26) Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.;

Kobayashi, H.; Yamashita, H. Hydrogen spillover-driven synthesis of

high-entropy alloy nanoparticles as a robust catalyst for CO2

hydrogenation. Nat. Commun. 2021, 12, 3884.

(27) Rodriguez, J. A.; Grinter, D. C.; Liu, Z.; Palomino, R. M.;

Senanayake, S. D. Ceria-based model catalysts: fundamental studies

on the importance of the metal−ceria interface in CO oxidation, the

water−gas shift, CO2 hydrogenation, and methane and alcohol

reforming. Chem. Soc. Rev. 2017, 46, 1824−1841.

(28) Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.; Ikeue, K.

On the Reasons for High Activity of CeO2 Catalyst for Soot

Oxidation. Chem. Mater. 2008, 20, 4489−4494.

(29) Trovarelli, A.; Llorca, J. Ceria Catalysts at Nanoscale: How Do

Crystal Shapes Shape Catalysis? ACS Catal. 2017, 7, 4716−4735.

(30) Aneggi, E.; Wiater, D.; De Leitenburg, C.; Llorca, J.; Trovarelli,

A. Shape-Dependent Activity of Ceria in Soot Combustion. ACS

Catal. 2014, 4, 172−181.

(31) Zhang, X.; You, R.; Li, D.; Cao, T.; Huang, W. Reaction

Sensitivity of Ceria Morphology Effect on Ni/CeO2 Catalysis in

Propane Oxidation Reactions. ACS Appl. Mater. Interfaces 2017, 9,

35897−35907.

(32) Hu, Z.; Liu, X.; Meng, D.; Guo, Y.; Guo, Y.; Lu, G. Effect of

Ceria Crystal Plane on the Physicochemical and Catalytic Properties

of Pd/Ceria for CO and Propane Oxidation. ACS Catal. 2016, 6,

2265−2279.

(33) Sayle, D. C.; Maicaneanu, S. A.; Watson, G. W. Atomistic

Models for CeO2(111), (110), and (100) Nanoparticles, Supported

on Yttrium-Stabilized Zirconia. J. Am. Chem. Soc. 2002, 124, 11429−

11439.

(34) Mori, K.; Jida, H.; Kuwahara, Y.; Yamashita, H. CoOxdecorated CeO2 heterostructures: Effects of morphology on their

catalytic properties in diesel soot combustion. Nanoscale 2020, 12,

1779−1789.

(35) Guo, Y.; Mei, S.; Yuan, K.; Wang, D.-J.; Liu, H.-C.; Yan, C.-H.;

Zhang, Y.-W. Low-Temperature CO2 Methanation over CeO2-

Article

Supported Ru Single Atoms, Nanoclusters, and Nanoparticles

Competitively Tuned by Strong Metal−Support Interactions and HSpillover Effect. ACS Catal. 2018, 8, 6203−6215.

(36) Tournayan, L.; Marcilio, N. R.; Frety, R. Promotion of

Hydrogen Uptake in Cerium Dioxide - the Role of Iridium. Appl.

Catal. 1991, 78, 31−43.

(37) Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. Enhanced catalytic

activity of ceria nanorods from well-defined reactive crystal planes. J.

Catal. 2005, 229, 206−212.

(38) Lu, X.; Zheng, D.; Zhang, P.; Liang, C.; Liu, P.; Tong, Y. Facile

synthesis of free-standing CeO2 nanorods for photoelectrochemical

applications. Chem. Commun. 2010, 46, 7721.

(39) Shun, K.; Mori, K.; Masuda, S.; Hashimoto, N.; Hinuma, Y.;

Kobayashi, H.; Yamashita, H. Revealing hydrogen spillover pathways

in reducible metal oxides. Chem. Sci. 2022, 13, 8137−8147.

(40) Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by

atomic size difference, heat of mixing and period of constituent

elements and its application to characterization of the main alloying

element. Mater. Trans. 2005, 46, 2817−2829.

(41) Chen, J.; Yiu, Y. M.; Wang, Z.; Covelli, D.; Sammynaiken, R.;

Finfrock, Y. Z.; Sham, T.-K. Elucidating the Many-Body Effect and

Anomalous Pt and Ni Core Level Shifts in X-ray Photoelectron

Spectroscopy of Pt−Ni Alloys. J. Phys. Chem. C 2020, 124, 2313−

2318.

(42) Bauer, J. C.; Mullins, D.; Li, M.; Wu, Z.; Payzant, E. A.;

Overbury, S. H.; Dai, S. Synthesis of silica supported AuCu

nanoparticle catalysts and the effects of pretreatment conditions for

the CO oxidation reaction. Phys. Chem. Chem. Phys. 2011, 13, 2571.

(43) Okamoto, K.; Akiyama, R.; Yoshida, H.; Yoshida, T.;

Kobayashi, S. Formation of Nanoarchitectures Including Subnanometer Palladium Clusters and Their Use as Highly Active Catalysts.

J. Am. Chem. Soc. 2005, 127, 2125−2135.

(44) Nilsson, J.; Carlsson, P.-A.; Grönbeck, H.; Skoglundh, M. First

Principles Calculations of Palladium Nanoparticle XANES Spectra.

Top. Catal. 2017, 60, 283−288.

(45) Lin, C.-M.; Hung, T.-L.; Huang, Y.-H.; Wu, K.-T.; Tang, M.-T.;

Lee, C.-H.; Chen, C. T.; Chen, Y. Y. Size-dependent lattice structure

of palladium studied by x-ray absorption spectroscopy. Phys. Rev. B

2007, 75, No. 125426.

(46) Imaoka, T.; Kitazawa, H.; Chun, W.-J.; Omura, S.; Albrecht, K.;

Yamamoto, K. Magic Number Pt13 and Misshapen Pt12 Clusters:

Which One is the Better Catalyst? J. Am. Chem. Soc. 2013, 135,

13089−13095.

(47) Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.;

Hutchings, G. J. Identification of active gold nanoclusters on iron

oxide supports for CO oxidation. Science 2008, 321, 1331−1335.

(48) Brown, W. A.; King, D. A. NO Chemisorption and Reactions

on Metal Surfaces: A New Perspective. J. Phys. Chem. B 2000, 104,

2578−2595.

(49) Zhang, L.; Spezzati, G.; Muravev, V.; Verheijen, M. A.; Zijlstra,

B.; Filot, I. A. W.; Su, Y.-Q.; Chang, M.-W.; Hensen, E. J. M.

Improved Pd/CeO2 Catalysts for Low-Temperature NO Reduction:

Activation of CeO2 Lattice Oxygen by Fe Doping. ACS Catal. 2021,

11, 5614−5627.

(50) Jing, Y.; Cai, Z.; Liu, C.; Toyao, T.; Maeno, Z.; Asakura, H.;

Hiwasa, S.; Nagaoka, S.; Kondoh, H.; Shimizu, K. I. Promotional

Effect of la in the Three-Way Catalysis of La-Loaded Al2O3-Supported

Pd Catalysts (Pd/La/Al2O3). ACS Catal. 2020, 10, 1010−1023.

(51) Yasumura, S.; Ide, H.; Ueda, T.; Jing, Y.; Liu, C.; Kon, K.;

Toyao, T.; Maeno, Z.; Shimizu, K.-I. Transformation of Bulk Pd to Pd

Cations in Small-Pore CHA Zeolites Facilitated by NO. JACS Au

2021, 1, 201−211.

(52) Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang,

H. P.; Liu, H. C.; Yan, C. H. Shape-selective synthesis and oxygen

storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J.

Phys. Chem. B 2005, 109, 24380−24385.

(53) Wang, N.; Qian, W.; Chu, W.; Wei, F. Crystal-plane effect of

nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for

methane dry reforming. Catal. Sci. Technol. 2016, 6, 3594−3605.

2142

https://doi.org/10.1021/jacsau.3c00210

JACS Au 2023, 3, 2131−2143

JACS Au

pubs.acs.org/jacsau

Article

(54) Delley, B. An all-electron numerical method for solving the

local density functional for polyatomic molecules. J. Chem. Phys. 1990,

92, 508−517.

(55) Delley, B. From molecules to solids with the DMol3 approach.

J. Chem. Phys. 2000, 113, 7756−7764.

(56) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient

Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.

(57) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.;

Joannopoulos, J. D. Iterative minimization techniques for ab initio

total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045−1097.

(58) Milman, V.; Winkler, B.; White, J. A.; Pickard, C. J.; Payne, M.

C.; Akhmatskaya, E. V.; Nobes, R. H. Electronic structure, properties,

and phase stability of inorganic crystals: A pseudopotential plane-wave

study. Int. J. Quantum Chem. 2000, 77, 895−910.

(59) Mizoguchi, T.; Tanaka, I.; Gao, S.-P.; Pickard, C. J. Firstprinciples calculation of spectral features, chemical shift and absolute

threshold of ELNES and XANES using a plane wave pseudopotential

method. J. Phys.: Condens. Matter 2009, 21, No. 104204.

2143

https://doi.org/10.1021/jacsau.3c00210

JACS Au 2023, 3, 2131−2143

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る