リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance

Gokcekaya, Ozkan 大阪大学

2020.12.01

概要

This is the first comprehensive study on the development of a cubic crystallographic texture in pure chromium (Cr) manufactured using laser powder bed fusion (LPBF) with different laser energy densities to alter its microstructure and high-temperature oxidation behavior. An increase in the laser energy density led to the formation of a strong crystallographic texture, which was preferentially oriented in the (100) plane, and there were microstructural improvements in the pure Cr. The grain size of the (100)-oriented Cr was larger than that of the randomly oriented Cr. In addition, the high-angle grain boundary and coincident site lattice (CSL) boundary characteristics were altered. The (100)-oriented Cr exhibited a decrease in the oxide thickness that was due to the decrease in the grain boundary density with a larger grain size and an increase in the CSL boundary ratio. In contrast, the Cr with a random texture showed higher oxidation kinetics and spallation of the oxide layer. The oxidation kinetics of the pure Cr manufactured using LPBF obeyed the parabolic rate law. However, the crystal orientation affected the oxidation of the Cr as the (100)-oriented pure Cr displayed a lower parabolic rate constant, indicating that the (100)-oriented Cr was oxidation-resistant. This is the first report to demonstrate the cubic crystallographic texture formation and the improvement of high-temperature oxidation resistance in Cr manufactured using LPBF.

参考文献

[1] A. Gilbert, Metallurgy of chromium, Nature 220 (1968) 310, https://doi.org/ 10.1038/220310a0.

[2] Y.F. Gu, H. Harada, Y. Ro, Chromium and chromium-based alloys: problems and possibilities for high-temperature service, JOM 56 (2004) 28–33, https://doi.org/ 10.1007/s11837-004-0197-0.

[3] D. Kong, C. Dong, X. Ni, X. Li, Corrosion of metallic materials fabricated by selective laser melting, Npj Mater. Degrad. 3 (2019) 24, https://doi.org/10.1038/ s41529-019-0086-1.

[4] B. Jo¨nsson, A. Westerlund, Oxidation comparison of alumina-forming and chromia- forming commercial alloys at 1100 and 1200 ◦ C, Oxid. Met. 88 (2017) 315–326, https://doi.org/10.1007/s11085-016-9710-4.

[5] P.K. Footner, D.R. Holmes, D. Mortimer, Oxidation of iron-chromium binary alloys, Nature 216 (1967) 54–56, https://doi.org/10.1038/216054a0.

[6] B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J.E. Svensson, L. G. Johansson, Oxidation of binary FeCr alloys (Fe-2.25Cr, Fe-10Cr, Fe-18Cr and Fe- 25Cr) in O2 and in O2 + H2O environment at 600 ◦C, Oxid. Met. 75 (2011) 183–207, https://doi.org/10.1007/s11085-010-9229-z.

[7] S. Hallstro¨m, M. Halvarsson, L. Ho¨glund, T. Jonsson, J. Ågren, High temperature oxidation of chromium: kinetic modeling and microstructural investigation, Solid State Ion. 240 (2013) 41–50, https://doi.org/10.1016/j.ssi.2013.02.017.

[8] M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, M. Takeyama, Effect of building direction on the microstructure and tensile properties of Ti-48Al-2Cr-2Nb alloy additively manufactured by electron beam melting, Addit. Manuf. 13 (2017) 61–70, https://doi.org/10.1016/j. addma.2016.11.001.

[9] K. Cho, R. Kobayashi, J.Y. Oh, H.Y. Yasuda, M. Todai, T. Nakano, A. Ikeda, M. Ueda, M. Takeyama, Influence of unique layered microstructure on fatigue properties of Ti-48Al-2Cr-2Nb alloys fabricated by electron beam melting, Intermetallics 95 (2018) 1–10, https://doi.org/10.1016/j.intermet.2018.01.009.

[10] N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Front, Mech. Eng. 8 (2013) 215–243, https://doi.org/10.1007/s11465-013-0248-8.

[11] T. Ishimoto, S. Wu, Y. Ito, S.-H. Sun, H. Amano, T. Nakano, Crystallographic orientation control of 316L austenitic stainless steel via selective laser melting, ISIJ Int. 60 (2020) 1758–1764, https://doi.org/10.2355/isijinternational.ISIJINT-2019-744.

[12] Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review, Mater. Des. 139 (2018) 565–586, https://doi.org/ 10.1016/j.matdes.2017.11.021.

[13] S.-H. Sun, K. Hagihara, T. Nakano, Effect of scanning strategy on texture formation in Ni-25at%Mo alloys fabricated by selective laser melting, Mater. Des. 140 (2018) 307–316, https://doi.org/10.1016/j.matdes.2017.11.060.

[14] S.-H. Sun, Y. Koizumi, S. Kurosu, Y.-P. Li, A. Chiba, Phase and grain size inhomogeneity and their influences on creep behavior of Co–Cr–Mo alloy additive manufactured by electron beam melting, Acta Mater. 86 (2015) 305–318, https:// doi.org/10.1016/j.actamat.2014.11.012.

[15] T. Nagase, T. Hori, M. Todai, S.-H. Sun, T. Nakano, Additive manufacturing of dense components in beta‑titanium alloys with crystallographic texture from a mixture of pure metallic element powders, Mater. Des. 173 (2019), 107771, https://doi.org/10.1016/j.matdes.2019.107771.

[16] N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al–high Si alloys produced by selective laser melting, Mater. Des. 99 (2016) 120–126, https://doi.org/10.1016/j. matdes.2016.03.053.

[17] S.-H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa, T. Nakano, Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting, Scr. Mater. 159 (2019) 89–93, https://doi.org/10.1016/j.scriptamat.2018.09.017.

[18] D.R. Baer, M.D. Merz, Differences in oxides on large-and small-grained 304 stainless steel, Metall. Trans. A. 11 (1980) 1973–1980, https://doi.org/10.1007/ BF02655116.

[19] P. Tunthawiroon, Y. Li, N. Tang, Y. Koizumi, A. Chiba, Effects of alloyed Si on the oxidation behaviour of Co–29Cr–6Mo alloy for solid-oxide fuel cell interconnects, Corros. Sci. 95 (2015) 88–99, https://doi.org/10.1016/j.corsci.2015.02.036.

[20] L. Liu, Z. Yang, C. Zhang, M. Ueda, K. Kawamura, T. Maruyama, Effect of grain size on the oxidation of Fe–13Cr–5Ni alloy at 973K in Ar–21vol%O2, Corros. Sci. 91 (2015) 195–202, https://doi.org/10.1016/j.corsci.2014.11.020.

[21] V. Trindade, H.-J. Christ, U. Krupp, Grain-size effects on the high-temperature oxidation behaviour of chromium steels, Oxid. Met. 73 (2010) 551–563, https:// doi.org/10.1007/s11085-010-9192-8.

[22] Z.Q. Cao, H.J. Sun, J. Lu, K. Zhang, Y. Sun, High temperature corrosion behavior of Cu–20Co–30Cr alloys with different grain size, Corros. Sci. 80 (2014) 184–190, https://doi.org/10.1016/j.corsci.2013.11.025.

[23] S. Samal, S.K. Mitra, Influence of grain shape, size, and grain boundary diffusion on high-temperature oxidation of pure metal Fe, Cu, and Zn, Metall. Mater. Trans. A. 46 (2015) 3324–3332, https://doi.org/10.1007/s11661-015-2987-0.

[24] K. Taneichi, T. Narushima, Y. Iguchi, C. Ouchi, Oxidation or nitridation behavior of pure chromium and chromium alloys containing 10 mass%Ni or Fe in atmospheric heating, Mater. Trans. 47 (2006) 2540–2546, https://doi.org/10.2320/ matertrans.47.2540.

[25] X. Wang, J.A. Szpunar, Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N, J. Alloy. Compd. 752 (2018) 40–52, https://doi.org/10.1016/j. jallcom.2018.04.173.

[26] J.-H. Kim, B.K. Kim, D.-I. Kim, P.-P. Choi, D. Raabe, K.-W. Yi, The role of grain boundaries in the initial oxidation behavior of austenitic stainless steel containing alloyed Cu at 700◦C for advanced thermal power plant applications, Corros. Sci. 96 (2015) 52–66, https://doi.org/10.1016/j.corsci.2015.03.014.

[27] C.N. Athreya, K. Deepak, D.-I. Kim, B. de Boer, S. Mandal, V.S. Sarma, Role of grain boundary engineered microstructure on high temperature steam oxidation behaviour of Ni based superalloy alloy 617, J. Alloy. Compd. 778 (2019) 224–233, https://doi.org/10.1016/j.jallcom.2018.11.137.

[28] L.P. Bonfrisco, M. Frary, Effects of crystallographic orientation on the early stages of oxidation in nickel and chromium, J. Mater. Sci. 45 (2010) 1663–1671, https:// doi.org/10.1007/s10853-009-4144-x.

[29] X. Wang, F. Fan, J.A. Szpunar, L. Zhang, Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900◦C, Mater. Charact. 107 (2015) 33–42, https://doi.org/10.1016/j.matchar.2015.06.029.

[30] S. Chevalier, What did we learn on the reactive element effect in chromia scale since Pfeil’s patent? Mater. Corros. 65 (2014) 109–115, https://doi.org/10.1002/ maco.201307310.

[31] D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Bio- functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting, Mater. Des. 152 (2018) 88–101, https://doi.org/10.1016/j. matdes.2018.04.058.

[32] S.G. Wang, M. Sun, H.B. Han, K. Long, Z.D. Zhang, The high-temperature oxidation of bulk nanocrystalline 304 stainless steel in air, Corros. Sci. 72 (2013) 64–72, https://doi.org/10.1016/j.corsci.2013.03.008.

[33] M.P. Phaniraj, D.-I. Kim, Y.W. Cho, Effect of grain boundary characteristics on the oxidation behavior of ferritic stainless steel, Corros. Sci. 53 (2011) 4124–4130, https://doi.org/10.1016/j.corsci.2011.08.020.

[34] L. Tan, K. Sridharan, T.R. Allen, The effect of grain boundary engineering on the oxidation behavior of INCOLOY alloy 800H in supercritical water, J. Nucl. Mater. 348 (2006) 263–271, https://doi.org/10.1016/j.jnucmat.2005.09.023.

[35] S. Yamaura, Y. Igarashi, S. Tsurekawa, T. Watanabe, Structure-dependent intergranular oxidation in Ni–Fe polycrystalline alloy, Acta Mater. 47 (1999) 1163–1174, https://doi.org/10.1016/S1359-6454(99)00007-5.

[36] B. Lustman, The rate of film formation on metals, Trans. Electrochem. Soc. 81 (1942) 359–375, https://doi.org/10.1149/1.3071385.

[37] K.R. Lawless, A.T. Gwathmey, The structure of oxide films on different faces of a single crystal of copper, Acta Metall. 4 (1956) 153–163, https://doi.org/10.1016/ 0001-6160(56)90133-X.

[38] F. Czerwinski, A. Zhilyaev, J.A. Szpunar, Grain boundary character distribution in oxides formed on (100) and (111) nickel single crystals coated with ceria gel, Corros. Sci. 41 (1999) 1703–1713, https://doi.org/10.1016/S0010-938X(99) 00006-2.

[39] S.P. Chenakin, Initial oxidation kinetics of Fe-Ni single crystals before and after ion bombardment, Appl. Surf. Sci. 84 (1995) 91–96, https://doi.org/10.1016/01694332(94)00471-4.

[40] D. Caplan, G.I. Sproule, Effect of oxide grain structure on the high-temperature oxidation of Cr, Oxid. Met. 9 (1975) 459–472, https://doi.org/10.1007/ BF00611694.

[41] D. Gu, Y. Shen, Effects of processing parameters on consolidation and microstructure of W–Cu components by DMLS, J. Alloy. Compd. 473 (2009) 107–115, https://doi.org/10.1016/j.jallcom.2008.05.065.

[42] B. Cheng, S. Shrestha, K. Chou, Stress and deformation evaluations of scanning strategy effect in selective laser melting, Addit. Manuf. 12 (2016) 240–251, https://doi.org/10.1016/j.addma.2016.05.007.

[43] A.H. Maamoun, Y.F. Xue, M.A. Elbestawi, S.C. Veldhuis, Effect of selective laser melting process parameters on the quality of Al alloy parts: powder characterization, density, surface roughness, and dimensional accuracy, Materials 11 (2018) 2343, https://doi.org/10.3390/ma11122343.

[44] K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, Suyalatu, S.-H. Sun, Successful additive manufacturing of MoSi2 including crystallographic texture and shape control, J. Alloy. Compd. 696 (2017) 67–72, https://doi.org/10.1016/j. jallcom.2016.11.191.

[45] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (1966) 1479–1484, https://doi.org/10.1016/0001-6160(66)90168-4.

[46] T. Ishimoto, K. Hagihara, K. Hisamoto, S.-H. Sun, T. Nakano, Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for the development of novel implants with a biocompatible low Young’s modulus, Scr. Mater. 132 (2017) 34–38, https://doi.org/10.1016/j.scriptamat.2016.12.038.

[47] R.W. Messler, Principles of welding: processes, physics. Chemistry, and Metallurgy, Wiley, New York, 2008.

[48] F. Yan, W. Xiong, J.E. Faierson, Grain structure control of additively manufactured metallic materials, Materials 10 (2017) 1260, https://doi.org/10.3390/ ma10111260.

[49] H.L. Wei, J. Mazumder, T. DebRoy, Evolution of solidification texture during additive manufacturing, Sci. Rep. 5 (2015) 16446, https://doi.org/10.1038/ srep16446.

[50] C.T. Sims, The case for chromium, JOM 15 (1963) 127–132, https://doi.org/ 10.1007/BF03378217.

[51] S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Mater. Sci. Eng. A. 513–514 (2009) 311–318, https://doi.org/10.1016/ j.msea.2009.02.019.

[52] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion, Engineering 3 (2017) 685–694, https://doi.org/10.1016/J. ENG.2017.05.023.

[53] Y. Zhou, S.F. Wen, B. Song, X. Zhou, Q. Teng, Q.S. Wei, Y.S. Shi, A novel titanium alloy manufactured by selective laser melting: microstructure, high temperature oxidation resistance, Mater. Des. 89 (2016) 1199–1204, https://doi.org/10.1016/j. matdes.2015.10.092.

[54] Q. Jia, D. Gu, Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties, J. Alloy. Compd. 585 (2014) 713–721, https://doi.org/10.1016/j.jallcom.2013.09.171.

[55] Q. Jia, D. Gu, Selective laser melting additive manufactured Inconel 718 superalloy parts: high-temperature oxidation property and its mechanisms, Opt. Laser Technol. 62 (2014) 161–171, https://doi.org/10.1016/j.optlastec.2014.03.008.

[56] T. Watanabe, H. Fujii, H. Oikawa, K.I. Arai, Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility, Acta Metall. 37 (1989) 941–952, https://doi.org/10.1016/0001-6160(89)90021-7.

[57] A. Garbacz, M.W. Grabski, The relationship between texture and CSL boundaries distribution in polycrystalline materials—II. analysis of the relationship between texture and coincidence grain boundary distribution, Acta Metall. Mater. 41 (1993) 475–483, https://doi.org/10.1016/0956-7151(93)90076-5.

[58] F. Cao, B. Tryon, C.J. Torbet, T.M. Pollock, Microstructural evolution and failure characteristics of a NiCoCrAlY bond coat in “hot spot” cyclic oxidation, Acta Mater. 57 (2009) 3885–3894, https://doi.org/10.1016/j.actamat.2009.04.039.

[59] F. Abe, H. Araki, H. Yoshida, M. Okada, R. Watanabe, The effect of grain size on the corrosion behaviour of inconel 600 in high-temperature steam, Corros. Sci. 21 (1981) 819–842, https://doi.org/10.1016/0010-938X(81)90024-X.

[60] A.S. Dorcheh, M. Schütze, M.C. Galetz, Factors affecting isothermal oxidation of pure chromium in air, Corros. Sci. 130 (2018) 261–269, https://doi.org/10.1016/j. corsci.2017.11.006.

[61] P. Kofstad, K.P. Lillerud, On high temperature oxidation of chromium: II. Properties of and the oxidation mechanism of chromium, J. Electrochem. Soc. 127 (1980) 2410–2419, https://doi.org/10.1149/1.2129481.

[62] L. Royer, X. Ledoux, S. Mathieu, P. Steinmetz, On the oxidation and nitridation of chromium at 1300 ◦C, Oxid. Met. 74 (2010) 79–92, https://doi.org/10.1007/ s11085-010-9198-2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る