リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: The case of a coffee agroforestry plantation on Andosols in Costa Rica」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Short-range-order minerals as powerful factors explaining deep soil organic carbon stock distribution: The case of a coffee agroforestry plantation on Andosols in Costa Rica

Chevallier Tiphaine Fujisaki Kenji Roupsard Olivier Guidat Florian Kinoshita Rintaro Filho Elias de Melo Viginio Lehner Peter Albrecht Alain 帯広畜産大学

2020.01.10

概要

Soil organic carbon (SOC) constitutes the largest terrestrial C stock, particularly in the Andosols of volcanic areas. Quantitative information on distribution of SOC stocks is needed to construct a baseline for studying temporal changes in SOC. The spatial variation of soil short-range-order minerals such as allophane usually explains the variability of topsoil SOC contents, but SOC data for deeper soil layers are needed. We found that within a 1 km2 Costa Rican basin covered by coffee agroforestry, SOC stocks in the upper 200 cm of soil were highly variable (24 to 72 kgCm-2). Topsoil SOC stocks were not correlated with SOC stocks present in deeper layers. Diffuse-reflectance mid-infrared (MIR) spectroscopy made possible the analysis of a large number of samples (69 soil profiles, i.e. 598 soil samples) for ammonium-oxalate and sodium-pyrophosphateextractable forms of Al, Fe, and Si, as well as SOC content and bulk density. Using the MIR spectra, we identified two different soil materials, which were identified as allophanic and halloysitic soil material. Allophanic soil occurred on top of the halloysitic soil. The thickness of the allophanic soil material, rich in SRO minerals and related to a young andic A horizon, explained the variability of SOC. This study illustrates that knowledge of topography and pedogenesis is needed to understand and extrapolate the distribution of SOC stocks at landscape scales.

この論文で使われている画像

参考文献

Andriamananjara, A., Hewson, J., Razakamanarivo, H., Andrisoa,

R. H., Ranaivoson, N., Ramboatiana, N., Razafindrakoto, M.,

Ramifehiarivo, N., Razafimanantsoa, M. P., Rabeharisoa, L.,

Ramananantoandro, T., Rasolohery, A., Rabetokotany, N., and

Razafimbelo, T.: Land cover impacts on aboveground and soil

carbon stocks in Malagasy rainforest, Agr. Ecosyst. Environ.,

233, 1–15, https://doi.org/10.1016/j.agee.2016.08.030, 2016.

Aomine, S. and Wada, K.: Differential weathering of volcanic ash

and pumice resulting in the formation of hydrated halloysite,

American Mineralogist, 47, 1024–1048, 1962.

Basile-Doelsch, I., Amundson, R., Stone, W. E. E., Masiello, C. A.,

Bottero, J. Y., Colin, F., Masin, F., Borschneck, D., and Meunier, J. D.: Mineralogical control of organic carbon dynamics in

a volcanic ash soil on La Réunion, Eur. J. Soil Sci., 56, 689–703,

https://doi.org/10.1111/j.1365-2389.2005.00703.x, 2005.

www.soil-journal.net/5/315/2019/

329

Batjes, N. H.: Total carbon and nitrogen in the soils of the world,

Eur. J. Soil Sci., 65, 4–21, https://doi.org/10.1111/ejss.12115,

2014.

Beare, M. H., McNeill, S. J., Curtin, D., Parfitt, R. L., Jones,

J. S., Dodd, M. B., and Sharp, J.: Estimating the organic

carbon stabilisation capacity and saturation deficit of soils:

a New Zealand case study, Biogeochemistry, 120, 71–87,

https://doi.org/10.1007/s10533-014-9982-1, 2014.

Ben-Dor, E., Chabrillat, S., Demattê, J. A. M., Taylor, G. R., Hill,

J., Whiting, M. L., and Sommer, S.: Using Imaging Spectroscopy

to study soil properties, Remote Sens. Environ., 113, S38–S55,

https://doi.org/10.1016/j.rse.2008.09.019, 2009.

Benegas, L., Ilstedt, U., Roupsard, O., Jones, J., and Malmer, A.:

Effects of trees on infiltrability and preferential flow in two contrasting agroecosystems in Central America, Agr. Ecosyst. Environ., 183, 185–196, https://doi.org/10.1016/j.agee.2013.10.027,

2014.

Blakemore, L. C., Searle, P. L., and Daly, B. K.: Soil Bureau

Laboratory Methods: Methods for chemical analysis of soils.

New Zealand Soil Bureau Scientific Report, 10A, CSIRO, New

Zealand, 1981.

Boudot, J. P.: Relative efficiency of complexed aluminum, noncrystalline Al hydroxide, allophane and imogolite in retarding the biodegradation of citric acid, Geoderma, 52, 29–39,

https://doi.org/10.1016/0016-7061(92)90073-G, 1992.

Bounouara, Z., Chevallier, T., Balesdent, J., Toucet, J.,

Sbih, M., Bernoux, M., Belaissaoui, N., Bouneb, O., and

Bensaid, R.: Variation in soil carbon stocks with depth

along a toposequence in a sub-humid climate in North

Africa (Skikda, Algeria), J. Arid Environ., 141, 25–33,

https://doi.org/10.1016/j.jaridenv.2017.02.001, 2017.

Buurman, P., Peterse, F., and Almendros Martin, G.: Soil organic

matter chemistry in allophanic soils: a pyrolysis-GC/MS study of

a Costa Rican Andosol catena, Eur. J. Soil Sci., 58, 1330–1347,

https://doi.org/10.1111/j.1365-2389.2007.00925.x, 2007.

Cambou, A., Cardinael, R., Kouakoua, E., Villeneuve, M., Durand, C., and Barthès, B. G.: Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field, Geoderma, 261, 151–159,

https://doi.org/10.1016/j.geoderma.2015.07.007, 2016.

Cardinael, R., Chevallier, T., Barthès, B., Saby, N., Parent, T., Dupraz, C., Bernoux, M., and Chenu, C.: Impact

of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon – A case study

in a Mediterranean context, Geoderma, 259–260, 288–299,

https://doi.org/10.1016/j.geoderma.2015.06.015, 2015.

CENIGA: Hojas Topográficas Escala 1 : 25 000, Proyecto TERRA,

available at: http://ceniga.sinac.go.cr/geonetwork/srv/eng/main.

home (last access: 31 October 2019), 1998.

Chang, C. W., Laird, D. A., Mausbach, M. J., and Hurburgh, C. R.:

Near-Infrared Reflectance Spectroscopy–Principal Components

Regression Analyses of Soil Properties, soil Sci. Soc. Am. J., 65,

480–490, https://doi.org/10.2136/sssaj2001.652480x, 2001.

Charbonnier, F., Roupsard, O., le Maire, G., Guillemot, J.,

Casanoves, F., Lacointe, A., Vaast, P., Allinne, C., Audebert,

L., Cambou, A., Clement-Vidal, A., Defrenet, E., Duursma,

R. A., Jarri, L., Jourdan, C., Khac, E., Leandro, P., Medlyn, B. E., Saint-Andre, L., Thaler, P., Van den Meersche, K.,

Aguilar, A. B., Lehner, P., and Dreyer, E.: Increased light-use

SOIL, 5, 315–332, 2019

330

T. Chevallier et al.: SRO minerals as powerful factors explaining deep SOC stock distribution

efficiency sustains net primary productivity of shaded coffee

plants in agroforestry system, Plant Cell Environ. 40, 1592–1608,

https://doi.org/10.1111/pce.12964, 2017.

Chevallier, T., Voltz, M., Blanchart, E., Chotte, J. L., Eschenbrenner, V., Mahieu, M., and Albrecht, A.: Spatial and temporal changes of soil C after establishment of a pasture on a

long-term cultivated vertisol (Martinique), Geoderma, 94, 43–58,

https://doi.org/10.1016/S0016-7061(99)00064-6, 2000.

Chevallier, T., Woignier, T., Toucet, J., and Blanchart,

E.: Organic carbon stabilization in the fractal pore

structure of Andosols, Geoderma, 159, 182–188,

https://doi.org/10.1016/j.geoderma.2010.07.010, 2010.

Chevallier, T., Fujisaki, K., Roupsard, O., Guidat, F., Kinoshita,

R., De Melo Viginio Fihlo, E., Lehner, P., and Albrecht,

A.: Soil carbon content, bulk densities, allophane and MIRS

data on Aquiares Watershed (Costa Rica), DataSuds, V1,

https://doi.org/10.23708/RKOTNR, 2019.

Churchman, J., Pasbakhsh, P., Lowe, D. J., and Theng, B. K. G.:

Unique but diverse: some observations on the formation, structure, and morphology of halloysite, Clays Minerals, 51, 395–416,

https://doi.org/10.1180/claymin.2016.051.3.14, 2016.

Clairotte, M., Grinand, C., Kouakoua, E., Thébault, A., Saby,

N., Bernoux, M., and Barthès, B. G.: National calibration of soil organic carbon concentration using diffuse

infrared reflectance spectroscopy, Geoderma, 276, 41–52,

https://doi.org/10.1016/j.geoderma.2016.04.021, 2016.

Costa Junior, C., Corbeels, M., Bernoux, M., Piccolo, M. C.,

Siqueira Neto, M., Feigl, B. J., Cerri, C. E. P., Cerri,

C. C., Scopel, E., and Lal, R.: Assessing soil carbon

storage rates under no-tillage: Comparing the synchronic

and diachronic approaches, Soil Till. Res., 134, 207–212,

https://doi.org/10.1016/j.still.2013.08.010, 2013.

Dahlgren, R. A., Saigusa, M., and Ugolini, F. C.: The nature, properties and management of volcanic soils, edited by: Sparks, D.

L., Advances in Agronomy, 82, 113–182, 2004.

Defrenet, E., Roupsard, O., Van den Meersche, K., Charbonnier, F., Pastor Pérez-Molina, J., Khac, E., Prieto, I., Stokes,

A., Roumet, C., Rapidel, B., de Melo Virginio Filho, E., Vargas, V. J., Robelo, D., Barquero, A., and Jourdan, C.: Root

biomass, turnover and net primary productivity of a coffee

agroforestry system in Costa Rica: effects of soil depth, shade

trees, distance to row and coffee age, Ann. Bot., 118, 833–851,

https://doi.org/10.1093/aob/mcw153, 2016.

Devitre, C., Gazel, E., Quesada, P., Tracy, R., Lucke, O., Soto, G.,

and Alvarado-Induni, G.: Geochemical Evidence for Multi-Stage

Chaotic Magma Mixing at Turrialba Volcano, Costa Rica, Fall

meeting AGU, Washington, D.C., 10–14 December 2018, 2018.

Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten,

T., and Schulze, E. D.: Spatial and vertical variation

of soil carbon at two grassland sites – Implications for

measuring soil carbon stocks, Geoderma, 141, 272–282,

https://doi.org/10.1016/j.geoderma.2007.06.003, 2007.

Feller, C., Albrecht, A., Blanchart, E., Cabidoche, Y. M., Chevallier, T., Hartmann, C., Eschenbrenner, V., Larre-Larrouy, M. C.,

and Ndandou, J. F.: Soil organic carbon sequestration in tropical

areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils, Nutr. Cycl. Agroecosys., 61,

19–31, https://doi.org/10.1023/A:1013359319380, 2001.

SOIL, 5, 315–332, 2019

Filimonova, S., Kaufhold, S., Wagner, F. E., Hausler, W., and

Kogel-Knabner, I.: The role of allophane nano-structure and

Fe oxide speciation for hosting soil organic matter in an allophanic Andosol, Geochim. Cosmochim. Ac., 180, 284–302,

https://doi.org/10.1016/j.gca.2016.02.033, 2016.

Gessler, P., Chadwick, O., Chamran, F., Althouse, L., and Holmes,

K.: Modeling Soil-Landscape and ecosystem properties using terrain attributes, Soil Sci. Soc. Am. J., 64, 2046–2056,

https://doi.org/10.2136/sssaj2000.6462046x, 2000.

Gómez-Delgado, F., Roupsard, O., le Maire, G., Taugourdeau, S.,

Pérez, A., van Oijen, M., Vaast, P., Rapidel, B., Harmand, J.

M., Voltz, M., Bonnefond, J. M., Imbach, P., and Moussa, R.:

Modelling the hydrological behaviour of a coffee agroforestry

basin in Costa Rica, Hydrol. Earth Syst. Sci., 15, 369–392,

https://doi.org/10.5194/hess-15-369-2011, 2011.

Hidalgo, C., Etchevers, J. D., Martinez-Richa, A., Yee-Madeira, H.,

Calderon, H. A., Vera-Graziano, R., and Matus, F.: Mineralogical characterization of the fine fraction (< 2 µm) of degraded

volcanic soils and tepetates in Mexico, Appl. Clay Sci., 49, 348–

358, https://doi.org/10.1016/j.clay.2009.11.007, 2010.

Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzún, C.,

and Godoy, R.: Aggregate and soil organic carbon dynamics in South Chilean Andisols, Biogeosciences, 2, 159–174,

https://doi.org/10.5194/bg-2-159-2005, 2005.

Janik, L. J., Merry, R. H., and Skjemstad, J. O.: Can mid infrared

diffuse reflectance analysis replace soil extractions?, Aust. J.

Exp. Agr., 38, 681–696, https://doi.org/10.1071/EA97144, 1998.

Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of

soil organic carbon and its relation to climate and vegetation, Ecol. Appl., 10, 423–436, https://doi.org/10.1890/10510761(2000)010[0423:TVDOSO]2.0.CO;2, 2000.

Kinoshita, R., Roupsard, O., Chevallier, T., Albrecht, A., Taugourdeau, S., Ahmed, Z., and Van Es, H.: Large topsoil organic carbon variability is controlled by Andisol properties

and effectively assessed by VNIR spectroscopy in a coffee

agroforestry system of Costa Rica, Geoderma, 262, 254–265,

https://doi.org/10.1016/j.geoderma.2015.08.026, 2016.

Kleber, M., Mikutta, R., Torn, M., and Jahn, R.: Poorly crystalline

mineral phases protect organic matter in acid subsoil horizons,

Eur. J. Soil Sci., 56, 717–725, https://doi.org/10.1111/j.13652389.2005.00706.x, 2005.

Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J., and

Vitousek, P. M.: Long-term carbon storage through retention of

dissolved aromatic acids by reactive particles in soil, Global

Change Biol., 18, 2594–2605, https://doi.org/10.1111/j.13652486.2012.02681.x, 2012.

Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627,

https://doi.org/10.1126/science.1097396, 2004.

Levard, C., Doelsch, E., Basile-Doelsch, I., Abidin, Z., Miche,

H., Masion, A., Rose, J., Borschneck, D., and Bottero, J.

Y.: Structure and distribution of allophanes, imogolite and

proto-imogolite in volcanic soils, Geoderma, 183, 100–108,

https://doi.org/10.1016/j.geoderma.2012.03.015, 2012.

Mathieu, J. A., Hatté, C., Balesdent, J., and Parent, É.: Deep soil

carbon dynamics are driven more by soil type than by climate: a

worldwide meta-analysis of radiocarbon profiles, Global Change

Biol., 21, 4278–4292, https://doi.org/10.1111/gcb.13012, 2015.

www.soil-journal.net/5/315/2019/

T. Chevallier et al.: SRO minerals as powerful factors explaining deep SOC stock distribution

Matus, F., Rumpel, C., Neculman, R., Panichini, M.,

and Mora, M. L.: Soil carbon storage and stabilisation in andic soils: A review, Catena, 120, 102–110,

https://doi.org/10.1016/j.catena.2014.04.008, 2014.

Mayer, L. M.: Relationships between mineral surfaces and organic

carbon concentrations in soils and sediments, Chem. Geol., 114,

347–363, https://doi.org/10.1016/0009-2541(94)90063-9, 1994.

Mayer, L. M. and Xing, B.: Organic matter-surface area relationships in acid soils, Soil Sci. Soc. Am. J., 65, 250–258,

https://doi.org/10.2136/sssaj2001.651250x, 2001.

Mayer, L. M., Schick, L., Hardy, K., Wagai, R., and McCarthy, J.: Organic matter in small mesopores in sediments and soils, Geochim. Cosmochim. Ac., 68, 3863–3872,

https://doi.org/10.1016/j.gca.2004.03.019, 2004.

McCarthy, J. F., Ilavsky, J., Jastrow, J. D., Mayer, L. M., Perfect, E.,

and Zhuang, J.: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores

with accumulating organic matter, Geochim. Cosmochim. Ac.,

72, 4725–4744, https://doi.org/10.1016/j.gca.2008.06.015, 2008.

McDowell, M. L., Bruland, G. L., Deenik, J. L., Grunwald,

S., and Knox, N. M.: Soil total carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse reflectance spectroscopy, Geoderma, 189–190, 312–320,

https://doi.org/10.1016/j.geoderma.2012.06.009, 2012.

Meijer, E. L. and Buurman, P.: Chemical trends in a perhumid

soil catena on the Turrialba volcano (Costa Rica), Geoderma,

117, 185–201, https://doi.org/10.1016/S0016-7061(03)00122-8,

2003.

Misnany, B., Tranter, G., McBratney, A. B., Brough, D.

M., and Murphy, B. W.: Regional transferability of

mid-infrared diffuse reflectance spectroscopic prediction

for soil chemical properties, Geoderma, 153, 155–162,

https://doi.org/10.1016/j.geoderma.2009.07.021, 2009.

Mizota, C. and Van Reewijk, L. P.: Clay mineralogy and chemistry

of soils formed in volcanic material in diverse climatic regions,

Soil Monograph no. 2, International Soil Reference and Information Center, Wageningen, 185 pp., 1989.

Mora, J. L., Guerra, J. A., Armas-Herrera, C. M., Arbelo, C.

D., and Rodríguez-Rodríguez, A.: Storage and depth distribution of organic carbon in volcanic soils as affected by environmental and pedological factors, Catena, 123, 163–175,

https://doi.org/10.1016/j.catena.2014.08.004, 2014.

Mora-Chinchilla, R.: Geomorfología de la Cuenca del Río Turrialba, Universidad de Costa Rica, San José, 2000.

Nocita, M., Stevens, A., Van Wesemael, B., Aitkenhead, M.,

Bachmann, M., Barthès, B. G., Ben Dor, E., Brown, D. J.,

Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M.,

Genot, V., Guerrerro, C., Knadel, M., Montanarella, L., Noon,

C., Ramirez-Lopez, L., Robertson, J., Sakai, H., Soriano-Disla,

J. M., Sheperd, K. D., Stenberg, B., Towett, E. K., Vargas,

R., and Wetterlind, J.: Soil Spectroscopy: An alternative to

wet chemistry for soil monitoring, Adv. Agron., 132, 139–159,

https://doi.org/10.1016/bs.agron.2015.02.002, 2015.

Noponen, M., Healey, J. R., Soto, G., and Haggar, J. P.: Sink or

source – The potential of coffee agroforestry systems to sequester

atmospheric CO2 into soil organic carbon, Agr. Ecosyst. Environ., 175, 60–68, https://doi.org/10.1016/j.agee.2013.04.012,

2013.

www.soil-journal.net/5/315/2019/

331

Parfitt, R. L.: Allophane and imogolite: role in soil biogeochemical processes, Clay Miner., 44, 135–155,

https://doi.org/10.1180/claymin.2009.044.1.135, 2009.

Parfitt, R. L. and Childs, C. W.: Estimation of forms of Fe and

Al: a review, and analysis of constrastig soils by dissolution

and Moessbauer methods, Aust. J. Soil Res., 26, 121–144,

https://doi.org/10.1071/SR9880121, 1988.

Parfitt, R. L., Russell, M., and Orbell, G. E.: Weathering sequence of

soils from volcanic ash involving allophane and halloysite, New

Zealand, Geoderma, 29, 41–57, https://doi.org/10.1016/00167061(83)90029-0, 1983.

Parfitt, R. L., Theng, B. K. G., Whitton, J. S., and Shepherd,

T. G.: Effects of clay minerals and land use on organic matter pools, Geoderma, 75, 1–12, https://doi.org/10.1016/S00167061(96)00079-1, 1997.

Parfitt, R. L. and Wilson, A. D.: Estimation of allophane and halloysite in three sequences of volcanic soils, Catena Suppl., 7, 1–

8, 1985.

Payan, F., Jones, D. L., Beer, J., and Harmand, J. M.: Soil characteristics below Erythrina poeppigiana in organic and conventional Costa Rican coffee plantations, Agroforest. Syst., 76, 81–

93, https://doi.org/10.1007/s10457-008-9201-y, 2009.

Percival, H. J., Parfitt, R. L., and Scott, N. A.: Factors controlling soil carbon levels in New Zealand grasslands: Is clay

content important?, Soil Sci. Soc. Am. J., 64, 1623–1630,

https://doi.org/10.2136/sssaj2000.6451623x, 2000.

Poulenard, J., Podwojewski, P., and Herbillon, A. J.: Characteristics of non-allophanic andisols with hydric properties from the Ecuadorian paramos, Geoderma, 117, 267–281,

https://doi.org/10.1016/s0016-7061(03)00128-9, 2003.

Powers, J. S. and Schlesinger, W. H.: Relationships among soil carbon distributions and biophysical factors at nested spatial scales

in rain forests of northeastern Costa Rica, Geoderma, 109, 165–

190, https://doi.org/10.1016/s0016-7061(02)00147-7, 2002.

Rasse, D. P., Mulder, J., Moni, C., and Chenu, C.: Carbon turnover

kinetics with depth in a French loamy soil, Soil Sci. Soc. Am. J.,

70, 2097–2105, https://doi.org/10.2136/sssaj2006.0056, 2006.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria,

available at: https://www.R-project.org/ (last access: 31 October 2019), 2016.

Ross, C. S. and Kerr, P. F.: Halloysite and allophane, U.S. Geological Survey Professional Papers, 185–189, 135–148, 1934.

Scheel, T., Dörfler, C., and Kalbitz, K.: Precipitation of dissolved organic matter by aluminium stabilizes carbon in

acidic forest soils, Soil Sci. Soc. Am. J., 71, 64–74,

https://doi.org/10.2136/sssaj2006.0111, 2007.

Shen, Q., Suarez-Abelenda, M., Camps-Arbestain, M., Calvelo

Pereira, R., McNally, S. R., and Kelliher, F. M.: An investigation of organic matter quality and quantity in acid soils asinfluenced by soil type and land use, Geoderma, 328, 44–55,

https://doi.org/10.1016/j.geoderma.2018.05.006, 2018.

Shi, S., Zhang, W., Zhang, P., Yu, Y., and Ding, F.: A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils, Forest Ecol. Manag., 296, 53–63,

https://doi.org/10.1016/j.foreco.2013.01.026, 2013.

Shoji, S., Nanzyo, M., Dahlgren, R. A., and Quantin, P.: Evaluation and proposed revisions of criteria for Andosols in the

SOIL, 5, 315–332, 2019

332

T. Chevallier et al.: SRO minerals as powerful factors explaining deep SOC stock distribution

world reference base for soil resources, Soil Sci., 161, 604–615,

https://doi.org/10.1097/00010694-199609000-00005, 1996.

Soriano-Disla, J. M., Janik, L. J., Rossel, R. A. V., Macdonald, L. M., and McLaughlin, M. J.: The performance

of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and

biological properties, Appl. Spectrosc. Rev., 49, 139–186,

https://doi.org/10.1080/05704928.2013.811081, 2014.

Takahashi, T. and Dahlgren, R. A.: Nature, properties and function

of aluminum–humus complexes in volcanic soils, Geoderma,

263, 110–121, https://doi.org/10.1016/j.geoderma.2015.08.032,

2016.

Terra, F. S., Dematte, J. A. M., and Rossel, R. A. V.: Proximal spectral sensing in pedological assessments: vis-NIR spectra for soil

classification based on weathering and pedogenesis, Geoderma,

318, 123–136, https://doi.org/10.1016/j.geoderma.2017.10.053,

2018.

Tonneijck, F. H., Jansen, B., Nierop, K. G. J., Verstraten, J. M.,

Sevink, J., and De Lange, L.: Towards understanding of carbon

stocks and stabilization in volcanic ash soils in natural Andean

ecosystems of northern Ecuador, Eur. J. Soil Sci., 61, 392–405,

https://doi.org/10.1111/j.1365-2389.2010.01241.x, 2010.

Torn, M., Trumbore, S., Chadwick, O., Vitousek, P., and Hendricks,

D.: Mineral control of soil organic carbon storage and turnover,

Nature, 389, 170–173, https://doi.org/10.1038/38260, 1997.

SOIL, 5, 315–332, 2019

Ugolini, F. C. and Dahlgren, R. A.: Soil development in volcanic

ash, Global J. Environ. Res., 6, 69–81, 2002.

Visacarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D.

J., Dematte, J. A. M., Shepherd, K. D., Shi, Z., Stenberg,

B., Stevens, A., Adamchuk, V., Aichi, H., Barthes, B. G.,

Bartholomeus, H. M., Bayer, A. D., Bernoux, M., Bottcher,

K., Brodsky, L., Du, C. W., Chappell, A., Fouad, Y., Genot,

V., Gomez, C., Grunwald, S., Gubler, A., Guerrero, C., Hedley, C. B., Knadel, M., Morras, H. J. M., Nocita, M., RamirezLopez, L., Roudier, P., Campos, E. M. R., Sanborn, P., Sellitto,

V. M., Sudduth, K. A., Rawlins, B. G., Walter, C., Winowiecki,

L. A., Hong, S. Y., and Ji, W.: A global spectral library to

characterize the world’s soil, Earth-Sci. Rev., 155, 198–230,

https://doi.org/10.1016/j.earscirev.2016.01.012, 2016.

Wada, K. J.: Allophane and Imogolite, in: MineraIs in Soil Environments, edited by: Dixon, J. B. and Weeds, S. B., 2nd ed. Soil Sc.

Soc. Am., WI, 1051–1108, 1989.

Welsh, K., Boll, J., Sanchez-Murillo, R., and Roupsard, O.: Isotope hydrology of a tropical coffee agroforestry watershed: Seasonal and event-based analyses, Hydrol. Process., 32, 1965–

1977, https://doi.org/10.1002/hyp.13149, 2018.

Zehetner, F., Miller, W. P., and West, L. T.: Pedogenesis of Volcanic

Ash Soils in Andean Ecuador, Soil Sci. Soc. Am. J., 67, 1797–

1809, https://doi.org/10.2136/sssaj2003.1797, 2003.

www.soil-journal.net/5/315/2019/

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る