リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Bimetallic Nanoparticle-Loaded Carbon Catalysts for Electrochemical Toluene Hydrogenation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Bimetallic Nanoparticle-Loaded Carbon Catalysts for Electrochemical Toluene Hydrogenation

今田 豊希 大阪府立大学 DOI:info:doi/10.24729/00017352

2021.04.20

概要

Worldwide energy demand continues to grow dramatically due to global population growth, continued economic development and rapid urbanization. Energy demand at the beginning of this century was 13.5 terawatts (TW) and is expected to increase from to 23 TW in 2030 and 30 TW in 2050 [1,2]. Energy produced by fossil fuels such as coal, oil and natural gas accounted for 79.5% of total global energy consumption in 2016, whereas renewable energy produced by hydropower, wind power, biopower and solar power was only 20.5% [2]. Moreover, the heavy dependence on fossil fuels as energy resources has caused the environmental issues and global warming [2].

Fossil fuels are heavily dependent on imports from overseas due to scarce energy resources in Japan. However, the oil crisis in 1973 promoted the diversification of energy sources to reduce dependence on fossil fuels, and the Sunshine project by the Ministry of International Trade and Industry (now the Ministry of Economy, Trade and Industry) started the aim of ensuring a long-term stable supply of energy that did not depend solely on fossil fuels. The main targets were solar power generation, geothermal power generation, hydrogen energy utilization and coal liquefaction/gasification. In addition, research on the feasibility of putting wind power generation and biomass energy into practical use is also underway.

Among various new energy sources, hydrogen reacts explosively with oxygen to generate significantly larger heat of combustion than gasoline [3]. Moreover, it is also possible to obtain electrical energy directly from the reaction, and fuel cells that use hydrogen as fuel utilize these phenomena. The sole reaction product in the fuel cells is water (vapor), and they do not emit any gases which promote environmental pollution and global warming, which is different from conventional systems such as gasoline engines and thermal power plants that use fossil fuels. Therefore, hydrogen is a very promising material as a countermeasure against energy and environmental problems. Fuel cells are devices that convert chemical energy obtained by the oxidation reaction of fuel into electrical energy. Fuel cells continue to generate electricity for all time as long as they continue to supply fuel and oxygen or air, which is different from batteries because their lives are limited.

この論文で使われている画像

参考文献

1. Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729.

2. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y. Chem. Rev. 2020, 120, 851-918.

3. White, C. M.; Steeper, R. R.; Lutz, A. E. Int. J. Hydrog. Energy, 2006, 31, 1292- 1305.

4. Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K. R. Renew. Sustain. Energy Rev. 2020, 120, 109620.

5. Dawood, F.; Anda, M.; Shafiullah, G. M. Int. J. Hydrogen Energy, 2020, 45, 3847- 3869.

6. Jani, I, P. Int. J. Hydrogen Energy, 2009, 34, 7368-7378.

7. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. Catal. Today 2009, 139, 244-260.

8. Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307-326.

9. Midilli, A.; Ay, A.; Dincer, I.; Rosen, M. A. Sust. Energ. Rev. 2005, 9, 255-271.

10. Balat, M. Int. J. Hydrogen Energy 2008, 33, 4013-4029.

11. Veziroğlu, T. N.; Şahin, S. Manag. 2008, 49, 1820-1831.

12. Stiegel. G. J.; Ramezan, M. Int. J. Coal. Geol. 2006, 65, 173-190.

13. Kothari, R.; Buddhi, D.; Sawhney, R. L. Renew. Sust. Energy. Rev. 2008, 12, 553- 563.

14. Balat, H.; Kirtay, E. Int. J. Hydrogen Energy, 2010, 35, 7416-7426.

15. Nikolaidis, P.; Poullikkas, A. Renew. Sust. Energy. Rev. 2017, 67, 597– 611

16. Singh, S.; Jain, S.; Venkateswaran, P. S.; Tiwari, A. K.; Nouni, M. R.; Pandey, J. K.; Goel, S. Renew. Sust. Energy. Rev. 2015, 51, 623-633.

17. Barbir, F. Energy 2009, 34, 308-312.

18. Kreuter, W.; Hofman, H. Int. J. Hydrogen Energy, 1998, 23, 661-666.

19. Lu, P. W. T.; Srinivasan S. J. Apple. Electrochem. 1979, 9, 269-283.

20. Wang, J.; Yue, X.; Yang, Y.; Sirisomboonchai, S.; Wang, P.; Ma, X.; Abudula, A.; Guan, G. J. Alloys Compd. 2020, 819, 153346.

21. Wang, X.; Zheng, Y.; Sheng, W.; Xu, Z. J.; Jaroniec, M.; Qiao, S.-Z. Mater. Today 2020, 36, 125-138.

22. Wang, H.; Fu, W.; Yang, X.; Huang, Z.; Li, J.; Zhang, H.; Wang, Y. J. Mater. Chem. A 2020, 8, 6926-6956.

23. Zhang, H.; Maijenburg, A. W.; Li, X.; Schweizer, S. L.; Wehrspohn, R. B. Adv. Funct. Mater. 2020, 30, 2203261.

24. Zeng, K.; Zhang, D. Prog. Energy Combust. Sci. 2010, 36, 307-326.

25. Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Int. J. Hydrogen Energy 2019, 44, 15072-15086.

26. Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Int. J. Hydrogen Energy, 2012, 37, 1048-1057.

27. Pollet, B. G.; Kocha, S. S.; Staffell, I. Curr. Opin. Electrochem. 2019, 16, 90-95.

28. He, T.; Pei, Q. J.; Chen, P. J. Energy Chem. 2015, 24, 587-594.

29. Dillon, A.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377-379.

30. Xia, Y.; Yang, Z.; Zhu, Y. J. Mater. Chem. A 2013, 1, 9365-9381.

31. Takagi, H.; Hatori, H.; Soneda, Y.; Yoshizawa, N.; Yamada, Y. Sci. Eng. B 2004, 108, 143-147.

32. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127-1129.

33. Singh, R.; Altaee, A.; Gautam, S. Heliyon, 2020, 6, e04487.

34. Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Energy Convers. Manage. 2018, 165, 602-627.

35. Langmi, H. W.; Ren, J.; North, B.; Mathe, M.; Bessarabov, D. Electrochim. Acta 2014, 128, 368-392.

36. Wijayanta, A. T.; Oda, T.; Purnomo, C. W.; Kashiwagi, T.; Aziz, M. Int. J. Hydrogen Energy 2019, 44, 15026-15044.

37. Andersson, J.; Grönkvist, S. Int. J. Hydrogen Energy 2019, 44, 11901-11919.

38. Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. J. Mater. Chem. 2008, 18, 2304-2310.

39. Aziz, M.; Putranto, A.; Biddinika, M. K.; Wijayanta, A. T. Int J Hydrogen Energy, 2017, 42, 27174-27183.

40. Mukherjee, S.; Devaguptapu, S. V.; Sviripa, A.; Lund, C. R. F.; Wu, G. Appl. Catal. B 2018, 226, 162-181.

41. Zheng, J.; Zhou, H.; Wang, C.-G.; Ye, E.; Xu, J. W.; Loh, X. J.; Li, Z. Energy Stor. Mater. 2021, 35, 695-722.

42. Zhu, Q.-L.; Xu, Q. Energy Environ. Sci. 2015, 8, 478-512.

43. Feng, X.; Zhao, Y.; Liu, D.; Mo, Y.; Liu, Y.; Chen, X.; Yan, W.; Jin, X.; Chen, B.; Duan, X.; Chen, D.; Yang, C. Int. J. Hydrogen Energy, 2018, 43, 17112-17120.

44. Lang, C.; Jia, Y.; Yao, X. Energy Stor. Mater. 2020, 26, 290-312.

45. Ramachandran, P. V.; Gagare, P. D. Inorg. Chem. 2007, 46, 7810-7817.

46. Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698-9725.

47. Liu, C.-H.; Wu, Y.-C.; Chou, C.-C.; Chen, B.-H.; Hsueh, C.-L.; Ku, J.-R.; Tsau, F. Int. J. Hydrogen Energy 2012, 37, 2950-2959.

48. Martelli, P.; Caputo, R.; Remhof, A.; Mauron, P.; Borgschulte, A.; Zuttel, A. J. Phys. Chem. C 2010, 114, 7173-7177.

49. Liu, B. H.; Li, Z. P. J. Power Sources 2009, 187, 527-534.

50. Patel, N.; Miotello, A. Int. J. Hydrogen Energy 2015, 40, 1429-1464.

51. Brack, P.; Dann, S. E.; Wijayantha, K. G. U. Energy Sci. Eng. 2015, 3, 174-188.

52. Zhu, Y.; Ouyang, L.; Zhong, H.; Liu, J.; Wang, H.; Shao, H.; Huang, Z.; Zhu, M. Angew. Chem., Int. Ed. 2020, 59, 8623-8629.

53. Zhou, L. Renew. Sust. Energy. Rev. 2005, 9, 395-408.

54. Ouyang, L.; Chen, K.; Jiang, J.; Yang, X.-S.; Zhu, M. J. Alloys Compd. 2020, 829, 154597.

55. Chen, J.; Kuriyama, N.; Xu, Q.; Takeshita, H. T.; Sakai, T. J. Phys. Chem. B 2001, 105, 11214-11220.

56. Zaluska, A.; Zaluski, L.; Ström-Olsen, J. O. J. Alloys Compd. 2000, 298, 125-134.

57. Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. J. Alloys Compd. 1999, 292, 247-252.

58. Li, W.; Li, C.; Ma, H.; Chen, J. J. Am. Chem. Soc. 2007, 129, 6710-6711.

59. Modisha, P. M.; Ouma, C. N. M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. Energy Fuels 2019, 33, 2778-2796.

60. Gianotti, E.; Taillades-Jacquin, M.; Roziere, J.; Jones, D. J. ACS Catal. 2018, 8, 4660-4680.

61. Niermann, M.; Beckendorff, A.; Kaltschmitt, M.; Bonhoff, K. Int. J. Hydrogen Energy 2019, 44, 6631-6654.

62. Okada, Y.; Sasaki, E.; Watanabe, E.; Hyodo, S.; Nishijima, H. Int. J. Hydrogen Energy 2006, 31, 1348-1356.

63. Shukla, A. A.; Gosavi, P. V.; Pande, J. V.; Kumar, V. P.; Chary, K. V. R.; Biniwale, R. B. Int. J. Hydrogen Energy 2010, 35, 4020-4026.

64. Kariya, N.; Fukuoka, A.; Utagawa, T.; Sakuramoto, M.; Goto, Y.; Ichikawa, M. Appl. Catal. A 2003, 247, 247-259.

65. Yolcular, S.; Olgun, O. Catal. Today 2008, 138, 198-202.

66. Boufaden, N.; Akkari, R.; Pawelec, B.; Fierro, J. L. G.; Said Zina, M.; Ghorbel, A. Appl. Catal. A 2015, 502, 329-339.

67. Li, S.; Tuel, A.; Meunier, F.; Aouine, M.; Farrusseng, D. J. Catal. 2015, 332, 25- 30.

68. Zieliński, M.; Pietrowski, M.; Kiderys, A.; Kot, M.; Alwin, E. J. Fluorine Chem. 2017, 195, 18-25.

69. Gonda, M.; Ohshima, M.; Kurokawa, H.; Miura, H. Int. J. Hydrogen Energy 2014, 39, 16339-16346.

70. Han, Z.; Peng, L.; Li, Q.; Hao, Y. Catal. Lett. 2017, 147, 1615-1621.

71. Lindfors, L. P.; Salmi, T.; Smeds, S. Chem. Eng. Sci. 1993. 48, 3813-3828.

72. Rautanen, P. A.; Aittamaa, J. R.; Krause, A. O. I. Ind. Eng. Chem. Res. 2000, 39, 4032-4039.

73. Furukawa, S.; Matsunami, Y.; Hamada, I.; Hashimoto, Y.; Sato, Y.; Komatsu, T. ACS Catal. 2018, 8, 8177-8181.

74. Langer, S. H.; Pietsch, S. J.; Sakellaropoulos, G. P. Energy 1979, 4, 225-233.

75. Mitsushima, S.; Takakuwa, Y.; Nagasawa, K.; Sawaguchi, Y.; Kohno, Y.; Matsuzawa, K.; Awaludin, Z.; Kato, A.; Nishiki, Y. Electrocatalysis 2016, 7, 127- 131.

76. Nagasawa, K.; Sawaguchi, Y.; Kato, A.; Nishiki, Y.; Mitsushima, S. Electrocatalysis 2017, 8, 164-169.

77. Matsuoka, K.; Miyoshi, K.; Sato, Y. J. Power Sources 2017, 343, 156-160.

78. Nagasawa, K.; Kato, A.; Nishiki, Y.; Matsumura, Y.; Atobe, M.; Mitsushima, S. Electrochim. Acta 2017, 246, 459-465.

79. Higuchi, E.; Ueda, Y.; Chiku, M.; Inoue, H. Electrocatalysis 2018, 9, 226-235.

80. Bao, Y.; Napporn, T. W.; Nagasawa, K.; Mitsushima, S. Electrocatalysis 2019, 10, 184-194.

81. Nagasawa, K.; Tanimoto, K.; Koike, J.; Ikegami, K.; Mitsushima, S. J. Power Sources 2019, 439, 227070.

82. Takano, K.; Tateno, H.; Matsumura, Y.; Fukazawa, A.; Kashiwagi, T.; Nakabayashi, K.; Nagasawa, K.; Mitsushima, S.; Atobe, M. Bull. Chem. Soc. Jpn. 2016, 89, 1178-1183.

83. Miyoshi, K.; Sato, Y.; Mitsushima, S. ECS Meet. Abstr. 2013, MA2013e02(10), Abstract number: 759.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る