リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「脳性麻痺患者(児)へのロボットスーツHALの適応」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

脳性麻痺患者(児)へのロボットスーツHALの適応

中川, 将吾 筑波大学 DOI:10.15068/00160568

2020.07.27

概要

ALを使用した歩行訓練は,訓練終了後も継続した動きを繰り返し行うことを可能とし,効果の持続性が従来の方法よりも優れている可能性が考えられる.これはHALの持つ双方向性のバイオフイードバック効果の特徴であり,様々な疾患でその効果が確認されている.2 S-HALの登場で今後HALを使用する年齢が若年化していくことで,運動機能の発達とリンクしてさらにその効果が増強することも予想される.学童期において歩行能力の改善が得られれば,その後は自立した活動が可能となり,成長終了後に迎える能力の低下が予防できる可能性がある.


これまで手術加療が良いか,リハビリテーションでの保存的加療が良いかの議論が行われていたが,HALを使用した場合の効果を予想して,リハビリテーションや装具,薬物,手術療法などの手段を包括的に検討し,対応していくことが望まれる.手術が先行して行われることとなった場合は,術後の筋力低下を最小限にとどめることもHALにて実現可能と思われる.


小児脳性麻痺患者に対してロボットスーツHALを使用した歩行訓練の可能性について検討してきた.様々な脳性麻痺患者に対して使用し,その安全性と実行可能性について 明らかになった.2S-HALを用いることで,歩行訓練が必要なほぼあらゆる症例に対して応用が可能となった.年齢が若いことの利点はその発達に与える影響が大きいとともに,二次障害の予防などに関しても有益であると考える.しかし,脳性麻痺の疾患多様性及び特異性を考慮し,歩容や運動機能に合わせて使用していくことが必要であり,個々の症例に対して適応には慎重にならなftればいftないと考える.今後さらに症例を積み重ね,効果を立証していくことで,小児脳性麻痺患者の運動機能向上につながっていくと確信している.

この論文で使われている画像

参考文献

1. Rosenbaum P, Paneth N, Leviton A, et al.A report: the definition and classification of cerebral palsy April 2006. Developmental medicine and child neurology Supplement 2007; 109: 8-14.

2. Bax M, Goldstein M, Rosenbaum P, et al. Proposed definition and classification of cerebral palsy, April 2005. Developmental medicine and child neurology 2005; 47(8): 571-6.

3. 近藤和泉.脳性麻痺リハビリテーションガイドライン第2版.第2版ed:金原出版;2014.

4. Little W. THE CLASSIC: Deformities of the Human Frame. Clinical Orthopaedics and Related Research (1976-2007) 2007; 456: 15-9.

5. Winter S, Autry A, Boyle C, et al. Frends in the prevalence of cerebral palsy in a population-based study. Pediatrics 2002; 110(6): 1220-5.

6. Reid SM, Carlin JB, Reddihough DS. Rates of cerebral palsy in Victoria, Australia, 1970 to 2004: has there been a change? Developmental Medicine & Child Neurology 2011; 53(10): 907-12.

7. Himmelmann K, Hagberg G, Beckung E, et al. The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth - year period 1995-1998. Acta paediatrica 2005; 94(3): 287-94.

8. Cans C. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Developmental Medicine & Child Neurology 2000; 42(12): 816-24.

9. Himmelmann K, Hagberg G, Uvebrant P. The changing panorama of cerebral palsy in Sweden. X. Prevalence and origin in the birth - year period 1999-2002. Acta paediatrica 2010; 99(9): 1337-43.

10. Van Naarden Braun K, Doernberg N, Schieve L, et al. Birth Prevalence of Cerebral Palsy: A Population-Based Study. Pediatrics 2016; 137(1).

11. Himmelmann K, Uvebrant P. The panorama of cerebral palsy in Sweden part XII shows that patterns changed in the birth years 2007-2010. Acta Paediatrica 2018; 107(3): 462-8.

12. Touyama M, Touyama J, Toyokawa S, et al. Trends in the prevalence of cerebral palsy in children born between 1988 and 2007 in Okinawa, Japan. Brain and Development 2016; 38(9): 792-9.

13. 石川源,中井章人.脳性麻痺の疫学:周産期医療の進歩は脳性麻痺の減少につながっているのか?(特集 脳性麻痺と産科医療補償制度).周産期医学2013; 43(2): 155-60.

14. 小寺澤敬子,中野加奈子,宮田広善ら.姫路市におftる15年間の脳性麻痺発生の動向.脳と発達2007; 39(1):32-6.

15. 平田正吾,奥住秀之,北島善夫ら.脳性麻痺の疫学についての研究動向.千葉大学教育学部研究紀要2013;61:39-43.

16. 鈴木順子, 伊藤正利,富和清隆.滋賀県におftる脳性麻痺の発生動向-1977〜1986.脳と発達1996; 28(1):60-5.

17. 鈴木順子, 宮嶋智子, 藤井達哉. 滋賀県の脳性麻痺の疫学的検討一1 9 7 7 〜2000-第2編 滋賀県の脳性麻痺の発生要因.脳と発達2009; 41(4): 284-8.

18. 鈴木順子, 宮嶋智子, 藤井達哉. 滋賀県の脳性麻痺の疫学的検討一1 9 7 7 〜2000-第1編 滋賀県の脳性麻痺の発生動向一出生体重別・在胎週数別分析.脳と発達2009; 41(4): 284-8.

19. Blair E, Stanley F. Issues in the classification and epidemiology of cerebral palsy. Mental Retardation and Developmental Disabilities Research Reviews 1997; 3(2): 184-93.

20. Westbom L, Hagglund G, Nordmark E. Cerebral palsy in a total population of 4- 11 year olds in southern Sweden. Prevalence and distribution according to different CP classification systems. BMC pediatrics 2007; 7(1):41.

21. Krageloh-Mann I, Cans C. Cerebral palsy update. Brain and development 2009; 31(7):537-44.

22. Himmelmann K, Hagberg G, Wiklund L, et al. Dyskinetic cerebral palsy: a population - based study of children born between 1991 and 1998. Developmental Medicine & Child Neurology 2007; 49(4): 246-51.

23. Odding E, Roebroeck ME, Stam HJ. The epidemiology of cerebral palsy: incidence, impairments and risk factors. Disability and rehabilitation 2006; 28(4): 183-91.

24. Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Developmental Medicine & Child Neurology 1989; 31(3): 341-52.

25. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39(4):214-23.

26. Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Physical therapy 2000; 80(9): 873-85.

27. Rosenbaum PL, Walter SD, Hanna SE, et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. Jama 2002; 288(11): 1357-63.

28. Hanna SE, Rosenbaum PL, Bartlett DJ, et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Developmental Medicine & Child Neurology 2009; 51(4): 295-302.

29. McIntyre S,rFaitz D, Keogh J, et al.A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Developmental Medicine & Child Neurology 2013; 55(6): 499-508.

30. Graham HK, Seiber P. Musculoskeletal Aspects of Cerebral Palsy. The Journal of Bone and Joint Surgery British volume 2003; 85-B(2): 157-66.

31. de Vries LS, Eken P, Dubowitz LM. The spectrum of leukomalacia using cranial ultrasound. Behavioural brain research 1992; 49(1): 1-6.

32. Himmelmann K, Horber V, De La Cruz J, et al.MRI classification system (MRICS) for children with cerebral palsy: development, reliability, and recommendations. Developmental Medicine & Child Neurology 2017; 59(1): 57-64.

33. Sankar C, Mundkur N. Cerebral palsy-definition, classification, etiology and early diagnosis. The Indian Journal of Pediatrics 2005; 72(10): 865-8.

34. 小崎慶介.日本におftる障害児療育の歴史.The Japanese Journal of Rehabilitation Medicine 2016;53(5): 348-52.

35. 前田知己.脳性麻痺の診断と小児科治療.Monthly book medical rehabilitation 2019; (232):1-7.

36. Kalen V, Conklin MM, Sherman FC. Untreated scoliosis in severe cerebral palsy. Journal of pediatric orthopedics 1992; 12(3): 337-40.

37. McCarthy JJ, D'Andrea LP, Betz RR, et al. Scoliosis in the child with cerebral palsy. JAAOS-Journal of the American Academy of Orthopaedic Surgeons 2006; 14(6): 367-75.

38. Ramstad K, Ferjesen T. Hip pain is more frequent in severe hip displacement: a population-based study of T7 children with cerebral palsy. J Pediatr Orthop B 2016; 25(3): 217-21.

39. Bobath K, Bobath B. The neuro - developmental treatment of cerebral palsy. Physical Therapy 1967; 47(11): 1039-43.

40. Butler C, Darrah J. Effects of neurodevelopmental treatment (NDT) for cerebral palsy: an AACPDM evidence report. Developmental medicine and child neurology 2001; 43(11):778-90.

41. Knox V, Evans AL. Evaluation of the functional effects of a course of Bobath therapy in children with cerebral palsy: a preliminary study. Developmental medicine and child neurology 2002; 44(7): 447-60.

42. Martin L, Baker R, Harvey A. A systematic review of common physiotherapy interventions in school-aged children with cerebral palsy. Physical & occupational therapy in pediatrics 2010; 30(4): 294-312.

43. Tsorlakis N, Evaggelinou C, Grouios G, et al. Effect of intensive neurodevelopmental treatment in gross motor function of children with cerebral palsy. Developmental medicine and child neurology 2004; 46(11): 740-5.

44. 朝貝芳美.脳性運動障害児の粗大運動に対する訓練治療効果に関する研究.発達障害児のリハビリテーション(医療 療育)の標準化と地域におftる肢体不自由児施設の機能に関する研究2003:92-118.

45. Schindl MR, Forstner C, Kern H, et al. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Archives of physical medicine and rehabilitation 2000; 81(3): 301-6.

46. Huang H-h, Fetters L, Hale J, et al. Bound for success: a systematic review of constraint-induced movement therapy in children with cerebral palsy supports improved arm and hand use. Physical therapy 2009; 89(11): 1126-41.

47. Borton D, Walker K, Pirpiris M, et al. Isolated calf lengthening in cerebral palsy: outcome analysis of risk factors. The Journal of bone and joint surgery British volume 2001; 83(3): 364-70.

48. Hoare BJ, Wallen MA, Imms C, et al. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane database of systematic reviews 2010; (1).

49. Morris C, Bowers R, Ross K, et al. Orthotic management of cerebral palsy: recommendations from a consensus conference. NeuroRehabilitation 2011; 28(1): 37-46.

50. Tardieu C, Lespargot A, Tab ary C, et al. For how long must the soleus muscle be stretched each day to prevent contracture? Developmental Medicine & Child Neurology 1988; 30(1):3-10.

51. Chung C- f, Chen C-L, Wong AM-K. Pharmacotherapy of spasticity in children with cerebral palsy. Journal of the Formosan Medical Association 2011;110(4): 215-22.

52. 平孝臣,堀智勝•バクロフェン髄腔内投与療法.医学のあゆみ1999; 189: 833-7.

53. Albright AL. Neurosurgical options in cerebral palsy. paediaTRicS and cHild HealTH 2008; 18(9):414-8.

54. Gaebler-Spira D, Revivo G. The use of botulinum toxin in pediatric disorders. Physical medicine and rehabilitation clinics of North America 2003; 14(4): 703-25.

55. Panteliadis CP. Cerebral Palsy: A Multidisciplinary Approach: Springer; 2018.

56. Peacock W, Arens LJ. Selective posterior rhizotomy for the relief of spasticity in cerebral palsy. South African medical journal= Suid-Afrikaanse tydskrif vir geneeskunde 1982; 62(4): 119-24.

57. McLaughlin J, Bjornson K, Temkin N, et al. Selective dorsal rhizotomy: meta­ analysis of three randomized controlled trials. Developmental medicine and child neurology 2002; 44(1): 17-25.

58. Graham HK, Fixsen J. Lengthening of the calcaneal tendon in spastic hemiplegia by the White slide technique. A long-term review. The Journal of bone and joint surgery British volume 1988; 70.

59. Ma FY, Seiber P, Nattrass GR, et al. Lengthening and transfer of hamstrings for a flexion deformity of the knee in children with bilateral cerebral palsy: technique and preliminary results. J Bone Joint Surg Br 2006; 88(2): 248-54.

60. McGinley JL, Dobson F, Ganeshalingam R, et al. Single - event multilevel surgery for children with cerebral palsy: a systematic review. Developmental Medicine & Child Neurology 2012; 54(2): 117-28.

61. Park TS, Dobbs MB, Cho J. Evidence Supporting Selective Dorsal Rhizotomy for Treatment of Spastic Cerebral Palsy. Cureus 2018; 10(10): e3466.

62. van Schie PE, Schothorst M, Dallmeijer AJ, et al. Short-and long-term effects of selective dorsal rhizotomy on gross motor function in ambulatory children with spastic diplegia. Journal of Neurosurgery: Pediatrics 2011; 7(5): 557-62.

63. Javors JR, Klaaren HE. The Vulpius procedure for correction of equinus deformity in cerebral palsy. Journal of pediatric orthopedics 1987; 7(2): 191-3.

64. Silver R, Rang M, Chan J. Adductor release in nonambulant children with cerebral palsy. Journal of pediatric orthopedics 1985; 5(6): 672-7.

65. Abel MF, Damiano DL, Pannunzio M, et al. Muscle-tendon surgery in diplegic cerebral palsy: functional and mechanical changes. Journal of Pediatric Orthopaedics 1999; 19(3):366-75.

66. Norlin R, Tkaczuk H. One-session surgery for correction of lower extremity deformities in children with cerebral palsy. Journal of pediatric orthopedics 1985; 5(2): 208-11.

67. Thomason P, Seiber P, Graham HK. Single event multilevel surgery in children with bilateral spastic cerebral palsy: a 5 year prospective cohort study. Gait & posture 2013; 37(1):23-8.

68. Nudo RJ, Wise BM, SiFuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272(5269): 1791-4.

69. Hebb DO, Hebb D. The organization of behavior: Wiley New York; 1949.

70. Krebs HI, Hogan N, Aisen ML, et al. Robot-aided neurorehabilitation. IEEE transactions on rehabilitation engineering 1998; 6(1): 75-87.

71. Lefmann S, Russo R, Hillier S.rrhe effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. J Neuroeng Rehabil 2017; 14(1):1.

72. Wiart L, Rosychuk RJ, Wright FV. Evaluation of the effectiveness of robotic gait training and gait-focused physical therapy programs for children and youth with cerebral palsy: a mixed methods RCT. BMC Neurol 2016;16: 86.

73. Zhang M, Davies TC, Xie S. Effectiveness of robot-assisted therapy on ankle rehabilitation--a systematic review. J Neuroeng Rehabil 2013;10: 30.

74. Druzbicki M, Rusek W, Snela S, et al. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J Rehabil Med 2013; 45(4): 358-63.

75. Qiu Q, Adamovich S, Saleh S, et al.A comparison of motor adaptations to robotically facilitated upper extremity task practice demonstrated by children with cerebral palsy and adults with stroke. IEEE Int Conf Rehabil Robot 2011; 2011: 5975431.

76. Brutsch K, Koenig A, Zimmerli L, et al. Virtual reality for enhancement of robot- assisted gait training in children with central gait disorders. J Rehabil Med 2011; 43(6): 493-9.

77. Smania N, Bonetti P, Gandolfi M, et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011; 90(2): 137-49.

78. Jezernik S, Colombo G, Keller T, Frueh H, Morari M. Robotic orthosis lokomat: A rehabilitation and research tool. Neuromodulation: Technology at the neural interface 2003; 6(2): 108-15.

79. Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Advanced Robotics 2005; 19(7): 717-34.

80. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child 2009; 94(8): 615-20.

81. Carvalho I, Pinto SM, Chagas DDV, et al. Robotic Gait Training for Individuals With Cerebral Palsy: A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil 2017; 98(11):2332-44.

82. Koenig A, Wellner M, Koneke S, et al. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Studies in health technology and informatics 2008; 132: 204-9.

83. Morishita T, Inoue T. Interactive Bio-feedback Therapy Using Hybrid Assistive Limbs for Motor Recovery after Stroke: Current Practice and Future Perspectives. Neurol Med Chir (Tokyo) 2016; 56(10): 605-12.

84. Taketomi T, Sankai Y. Stair ascent assistance for cerebral palsy with robot suit HAL. 2012 IEEE/SICE International Symposium on System Integration (SII); 2012: IEEE; 2012. p. 331-6.

85. Takahashi K, Mutsuzaki H, Mataki Y, et al. Safety and immediate effect of gait training using a Hybrid Assistive Limb in patients with cerebral palsy. J Phys Ther Sci 2018; 30(8): 1009-13.

86. Matsuda M, Iwasaki N, Mataki Y, et al. Robot-assisted training using Hybrid Assistive Limb(R) for cerebral palsy. Brain Dev 2018; 40(8): 642-8.

87. Matsuda M, Mataki Y, Mutsuzaki H, et al. Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb (HAL) for cerebral palsy. J Phys Ther Sci 2018; 30(2): 207-12.

88. Mataki Y, Kamada H, Mutsuzaki H, et al. Use of Hybrid Assistive Limb (HAL((R))) for a postoperative patient with cerebral palsy: a case report. BMC Res Notes 2018; 11(1):201.

89. Yoshikawa K, Mutsuzaki H, Sano A, et al. Training with Hybrid Assistive Limb for walking function after total knee arthroplasty. Journal of orthopaedic surgery and research 2018; 13(1): 163.

90. Yoshioka T, Sugaya H, Kubota S, et al. Knee-extension training with a single­ joint hybrid assistive limb during the early postoperative period after total knee arthroplasty in a patient with osteoarthritis. Case reports in orthopedics 2016; 2016.

91. Tanaka Y, Oka H, Nakayama S, et al. Improvement of walking ability during postoperative rehabilitation with the hybrid assistive limb after total knee arthroplasty: a randomized controlled study. SAGE open medicine 2017; 5: 2050312117712888.

92. Nakagawa S, Mutsuzaki H, Mataki Y, et al. Newly developed hybrid assistive limb for pediatric patients with cerebral palsy: a case report. Journal of Physical Therapy Science 2019; 31(8): 702-7.

93. Lee SH, Shim JS, Kim K, et al. Gross Motor Function Outcome After Intensive Rehabilitation in Children With Bilateral Spastic Cerebral Palsy. Ann Rehabil Med 2015; 39(4):624-9.

94. Bower E, Michell D, Burnett M, et al. Randomized controlled trial of physiotherapy in 56 children with cerebral palsy followed for 18 months. Developmental Medicine and Child Neurology 2001; 43(1): 4-15.

95. 吉川憲一,水上昌文,佐野歩ら.ロボットスーツHALを用いた脊髄損傷不全麻痺者に対する継続的歩行練習の効果.理学療法科学2014; 29(2): 165-71.

96. Ikumi A, Kubota S, Shimizu Y, et al. Decrease of spasticity after hybrid assistive limb® training for a patient with C4 quadriplegia due to chronic SCI. The journal of spinal cord medicine 2017; 40(5): 573-8.

97. Baratta R, Solomonow M, Zhou B, et al. Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. The American journal of sports medicine 1988; 16(2): 113-22.

98. Damiano DL, Martellotta TL, Sullivan DJ, et al. Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Arch Phys Med Rehabil 2000; 81(7): 895-900.

99. Saita K, Morishita T, Arima H, et al. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy. PloS one 2018; 13(1): e0191361.

100. Seniorou M, Thompson N, Harrington M, et al. Recovery of muscle strength following multi-level orthopaedic surgery in diplegic cerebral palsy. Gait & posture 2007; 26(4):475-81.

101. Rodda J, Graham HK, Nattrass G, et al. Correction of severe crouch gait in patients with spastic diplegia with use of multilevel orthopaedic surgery. JBJS 2006; 88(12):2653-64.

102. Gonzalez ACdO, Costa TF, Andrade ZdA, et al. Wound healing-A literature review. Anais brasileiros de dermatologia 2016; 91(5): 614-20.

103. Davids JR, Bagley AM, Bryan M. Kinematic and kinetic analysis of running in children with cerebral palsy. Developmental Medicine & Child Neurology 1998; 40(8): 528-35.

104. Desloovere K, Molenaers G. Age related changes in EMG profiles and muscle length patterns during gait in healthy growing children and adults. International Symposium on 3D Analysis of Human Movement, Date: 2006/06/28-2006/06/30, Location: Valencienne; 2006; 2006.

105. Endo Y, Mutsuzaki H, Mizukami M, et al. Long-term sustained effect of gait training using a hybrid assistive limb on gait stability via prevention of knee collapse in a patient with cerebral palsy: a case report. J Phys Ther Sci 2018; 30(9): 1206-10.

106. Wright FV, Sheil EM, Drake JM, et al. Evaluation of selective dorsal rhizotomy for the reduction of spasticity in cerebral palsy: a randomized controlled trial. Developmental Medicine & Child Neurology 1998; 40(4): 239-47.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る