リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Open-[60]fullerene–aniline conjugates with near-infrared absorption」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Open-[60]fullerene–aniline conjugates with near-infrared absorption

Sadai, Shumpei Hashikawa, Yoshifumi Murata, Yasujiro 京都大学 DOI:10.1039/d3ra02113k

2023

概要

Two open-[60]fullerene–aniline conjugates were synthesized, in which the two-fold addition of diamine gave a thiazolidine-2-thione ring on the [60]fullerene cage in the presence of CS₂. By increasing the number of N, N-dimethylaniline moieties, the absorption edge was considerably shifted up to 1200 nm owing to effective acceptor–donor interactions.

この論文で使われている画像

参考文献

(a) UV-vis-NIR absorption spectra of 1–3 (50 mM in benzene).

(b) Cyclic voltammograms of 1–3 (1 mM in ODCB, 0.1 M n-Bu4N$BF4,

100 mV s−1). (c) Molecular orbitals of 1–3 (B3LYP-D3/6-31G(d)).

Fig. 5

conjugates could be used for organic solar cells15a and perovskite solar cells.15b Upon seeing cyclic voltammograms (Fig. 5b),

the oxidation potentials Eox,pa of 2 (+0.44 V) and 3 (+0.26 V) were

cathodically shied by DE −0.92 and −1.10 V with respect to 1

(+1.36 V). This is in sharp contrast to the reduction potentials

without showing considerable shis. These observations

suggest that the conjugation with the aniline moiety renders the

HOMO levels higher while it has less contribution to the LUMO

levels. The oxidation wave found at Eox,pa −0.47 V might be

attributed to S-containing compounds16 partly decomposed

from 3 via electrochemical process. According to theoretical

calculations (B3LYP-D3/6-31G(d)), the LUMO delocalizes over

the entire [60]fullerene skeleton for all cases whereas high

HOMO coefficients were found at the N,N-dimethylaniline

moieties for 2 and 3 (Fig. 5c). Thus, the electrochemical

14578 | RSC Adv., 2023, 13, 14575–14579

1 (a) Z. Liu, Z. Liu, R. Gao, J. Su, Y. Qiu and L. Gan, Org. Chem.

Front., 2022, 9, 320–328; (b) Y. Hashikawa, N. Fujikawa and

Y. Murata, J. Am. Chem. Soc., 2022, 144, 23292–23296.

2 (a) Z. Xiao, G. Ye, Y. Liu, S. Chen, Q. Peng, Q. Zuo and

L. Ding, Angew. Chem., Int. Ed., 2012, 51, 9038–9041; (b)

Y. Hashikawa, H. Yasui, K. Kurotobi and Y. Murata, Mater.

Chem. Front., 2018, 2, 206–213.

3 (a) S.-i. Iwamatsu, T. Uozaki, K. Kobayashi, S. Re, S. Nagase

and S. Murata, J. Am. Chem. Soc., 2004, 126, 2668–2669; (b)

Y. Yu, L. Xu, X. Huang and L. Gan, J. Org. Chem., 2014, 79,

2156–2162.

4 (a) Y. Hashikawa, S. Okamoto and Y. Murata, Commun.

Chem., 2020, 3, 90; (b) Y. Hashikawa, N. Fujikawa,

S. Okamoto and Y. Murata, Dalton Trans., 2022, 51, 17804–

17808; (c) Y. Hashikawa, S. Sadai, S. Okamoto and

Y. Murata, Angew. Chem., Int. Ed., 2023, 62, e202215380.

5 (a) M. Murata, Y. Murata and K. Komatsu, Chem. Commun.,

2008,

6083–6094;

(b)

G.

C.

Vougioukalakis,

M. M. Roubelakis and M. Orfanopoulos, Chem. Soc. Rev.,

2010, 39, 817–844; (c) L. Shi and L. Gan, J. Phys. Org.

Chem., 2013, 26, 766–772.

6 (a) S. Liu, C. Zhang, X. Xie, Y. Yu, Z. Dai, Y. Shao, L. Gan and

Y. Li, Chem. Commun., 2012, 48, 2531–2533; (b) X. Liu,

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Paper

Open Access Article. Published on 12 May 2023. Downloaded on 11/1/2023 9:54:43 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

10

11

R. Gao, Z. Liu, J. Ming, Y. Qiu, J. Su and L. Gan, Chin. J.

Chem., 2022, DOI: 10.1002/cjoc.202200829.

Y. Hashikawa, S. Sadai and Y. Murata, Org. Lett., 2021, 23,

9586–9590.

Y. Hashikawa and Y. Murata, Asian J. Org. Chem., 2022, 11,

e202200357.

(a) Y. Li, G. Zhang, D. Wang, B. Xu, D. Xu, N. Lou and L. Gan,

Angew. Chem., Int. Ed., 2016, 55, 14590–14594; (b) Y. Li and

L. Gan, Chem.–Eur. J., 2017, 23, 10485–10490; (c)

Y. Hashikawa and Y. Murata, Chem. Sci., 2020, 11, 12428–

12435; (d) Y. Hashikawa, S. Okamoto, S. Sadai and

Y. Murata, J. Am. Chem. Soc., 2022, 144, 18829–18833.

Z. Zhou, N. Xin and L. Gan, Chem.–Eur. J., 2018, 24, 451–457.

(a) K. Kurotobi and Y. Murata, Science, 2011, 333, 613–616;

(b) Y. Hashikawa, M. Murata, A. Wakamiya and Y. Murata,

J. Am. Chem. Soc., 2017, 139, 16350–16358.

© 2023 The Author(s). Published by the Royal Society of Chemistry

RSC Advances

12 (a) S.-L. Wu and X. Gao, J. Org. Chem., 2018, 83, 2125–2130;

(b) N. Kumar, R. Venkatesh and J. Kandasamy, Org. Biomol.

Chem., 2022, 20, 6766–6770; (c) To the best of our

knowledge, this is rst example of C60–H production under

cycloaddition of aniline to the C60 cage.

13 A. Bondi, J. Phys. Chem., 1964, 68, 441–451.

14 S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and

A. L. Nussbaumer, Chem. Rev., 2015, 115, 10081–10206.

15 (a) S. Collavini and J. L. Delgado, Sustainable Energy Fuels,

2018, 2, 2480–2493; (b) J. Pascual, J. L. Delgado and

R. Tena-Zaera, J. Phys. Chem. Lett., 2018, 9, 2893–2902.

16 R. Kizek, J. Vacek, L. Trnkov´

a and F. Jelen,

Bioelectrochemistry, 2004, 63, 19–24.

RSC Adv., 2023, 13, 14575–14579 | 14579

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る