リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photophysical and electrochemical properties of 9-naphthyl-3,6-diaminocarbazole derivatives and their application as photosensitizers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photophysical and electrochemical properties of 9-naphthyl-3,6-diaminocarbazole derivatives and their application as photosensitizers

Matsubara, Ryosuke Kuang, Huilong Yabuta, Tatsushi Xie, Weibin Hayashi, Masahiko Sakuda, Eri 神戸大学

2023.06

概要

A series of 3,6-diamino-9-naphthylcarbazole derivatives were synthesized and characterized experimentally and computationally. As the lowest unoccupied molecular orbital of the naphthyl group has lower energy than that of the phenyl group, a charge transfer from carbazole to naphthyl in the excited states occurred causing solvatofluorochromism and solvent-dependency in fluorescence quantum yields. A molecule having two carbazole substituents sandwiching the central naphthyl ring had absorption reaching 470 nm and a high reducing capability in the excited state. This molecule could successfully photosensitize the hydrodehalogenation of haloarenes under visible light irradiation.

この論文で使われている画像

参考文献

[1] C.K. Prier, D.A. Rankic, D.W. MacMillan, Visible light photoredox catalysis with

transition metal complexes: applications in organic synthesis, Chem. Rev. 113

(2013) 5322–5363.

[2] K.P.S. Cheung, S. Sarkar, V. Gevorgyan, Visible light-induced transition metal

catalysis, Chem. Rev. 122 (2022) 1543–1625.

[3] T. Bortolato, S. Cuadros, G. Simionato, L. Dell’Amico, The advent and development

of organophotoredox catalysis, Chem. Commun. 58 (2022) 1263–1283.

[4] S. Dadashi-Silab, S. Doran, Y. Yagci, Photoinduced electron transfer reactions for

macromolecular syntheses, Chem. Rev. 116 (2016) 10212–10275.

[5] N. Noto, S. Saito, Arylamines as more strongly reducing organic photoredox

catalysts than fac-[Ir(ppy)3], ACS Catal 12 (2022) 15400–15415.

[6] D.A. Nicewicz, D.W.C. MacMillan, Merging photoredox catalysis with

organocatalysis: the direct asymmetric alkylation of aldehydes, Science 322 (2008)

77–80.

[7] M.A. Ischay, M.E. Anzovino, J. Du, T.P. Yoon, Efficient visible light photocatalysis

of [2+2] enone cycloadditions, J. Am. Chem. Soc. 130 (2008) 12886–12887.

[8] J.M.R. Narayanam, J.W. Tucker, C.R.J. Stephenson, Electron-transfer photoredox

catalysis: development of a tin-free reductive dehalogenation reaction, J. Am.

Chem. Soc. 131 (2009) 8756–8757.

[9] R. Matsubara, T. Shimada, Y. Kobori, T. Yabuta, T. Osakai, M. Hayashi,

Photoinduced charge-transfer state of 4-carbazolyl-3-(trifluoromethyl)benzoic

acid: photophysical property and application to reduction of carbon-halogen bonds

as a sensitizer, Chem. Asian J. 11 (2016) 2006–2010.

[10] R. Matsubara, T. Yabuta, U.M. Idros, M. Hayashi, F. Ema, Y. Kobori, K. Sakata,

UVA- and visible-light-mediated generation of carbon radicals from

organochlorides using nonmetal photocatalyst, J. Org. Chem. 83 (2018)

9381–9390.

[11] T. Yabuta, M. Hayashi, R. Matsubara, Photocatalytic reductive C–O bond cleavage

of alkyl aryl ethers by using carbazole catalysts with cesium carbonate, J. Org.

Chem. 86 (2021) 2545–2555.

[12] W. Xie, J. Xu, U. Md Idros, J. Katsuhira, M. Fuki, M. Hayashi, Y. Kobori,

R. Matsubara, Non-metal photochemical reduction of CO2 to formate with

organohydride-recycle strategy, ChemRxiv (2021), https://doi.org/10.26434/

chemrxiv-2021.ch3ts.

4. Conclusion

Carbazole derivatives as PSs with a naphthalene ring at the 9-posi­

tion and amino groups at the 3- and 6-positions of carbazole were syn­

thesized. The presence of a naphthalene ring at the 9-position induced

solvent-dependency in absorption and fluorescence spectra, which was

attributed to the excited-state CT character made by a one-electron

transfer from carbazole to naphthyl moiety. As for amino groups at

the 3- and 6-positions, the sterically smaller NMe2 elongated the ab­

sorption wavelength more than NPh2. Two carbazole moieties were

substituted on the naphthalene ring in the para relationship in PS 3a that

showed absorption reaching 470 nm, and the oxidation potential in its

excited state was sufficiently negative (–2.08 V vs. SCE). The hydro­

dehalogenation of haloarenes in the presence of 3a as a PS proceeded

under visible light irradiation of ≥420 nm. The knowledge of the rela­

tionship between the structure and optoelectronic properties obtained in

this study is useful for designing future organic PSs.

R. Matsubara et al.

Journal of Photochemistry and Photobiology 15 (2023) 100176

[13] D. Rehm, A. Weller, Kinetics of fluorescence quenching by electron and H-atom

transfer, Isr. J. Chem. 8 (1970), 259-&.

[14] H. Jiang, J. Sun, J. Zhang, A review on synthesis of carbazole-based chromophores

as organic light-emitting materials, Curr. Org. Chem. 16 (2012) 2014–2025.

[15] G. Sathiyan, E.K.T. Sivakumar, R. Ganesamoorthy, R. Thangamuthu, P. Sakthivel,

Review of carbazole based conjugated molecules for highly efficient organic solar

cell application, Tetrahedron Lett. 57 (2016) 243–252.

[16] B. Wex, B.R. Kaafarani, Perspective on carbazole-based organic compounds as

emitters and hosts in TADF applications, J. Mater. Chem. C 5 (2017) 8622–8653.

[17] D.R. Prudhomme, Z. Wang, C.J. Rizzo, An improved photosensitizer for the

photoinduced electron-transfer deoxygenation of benzoates and m(trifluoromethyl)benzoates, J. Org. Chem. 62 (1997) 8257–8260.

[18] B. Shen, M.W. Bedore, A. Sniady, T.F. Jamison, Continuous flow photocatalysis

enhanced using an aluminum mirror: rapid and selective synthesis of 2′ -deoxy and

2′ ,3′ -dideoxynucleosides, Chem. Commun. 48 (2012) 7444–7446.

[19] R. Matsubara, Y.-S. Shin, T. Shimada, M. Hayashi, Revisiting the Saito

photochemical reduction and the development of a one-pot deoxygenation of

alcohols, Asian J. Org. Chem. 3 (2014) 1054–1057.

[20] Kaji, H.; Suzuki, H.; Suzuki, K.; Oiwa, H.; Wakamiya, A.; Fukushima, T.; Suzuki, F.;

Murata, Y.; Shizu, K.; Adachi, C. Aromatic compounds bearing carbazolyl and

triazinyl groups as light-emitting materials and delayed fluorescent materials, and

organic light-emitting devices using them. WO2014133121, 2014.

[21] T.D. Weinhold, N.A. Reece, K. Ribeiro, M. Lopez Ocasio, N. Watson, K. Hanson, A.

R. Longstreet, Assessing carbazole derivatives as single-electron photoreductants,

J. Org. Chem. 87 (2022) 16928–16936.

[22] L.J. McClure, P.C. Ford, Ligand macrocycle effects on the photophysical properties

of rhodium(III) complexes: a detailed investigation of cis- and trans-dicyano

(1,4,8,11-tetraazacyclotetradecane)rhodium(III) and related species, J. Phys.

Chem. 96 (1992) 6640–6650.

[23] E. Ota, H. Wang, N.L. Frye, R.R. Knowles, A redox strategy for light-driven, out-ofequilibrium isomerizations and application to catalytic C–C bond cleavage

reactions, J. Am. Chem. Soc. 141 (2019) 1457–1462.

[24] K. Durka, M. Urban, M. Dąbrowski, P. Jankowski, T. Kli´s, S. Luli´

nski, Cationic and

betaine-type boronated acridinium dyes: synthesis, characterization, and

photocatalytic activity, ACS Omega 4 (2019) 2482–2492.

[25] H.G. Roth, N.A. Romero, D.A. Nicewicz, Experimental and calculated

electrochemical potentials of common organic molecules for applications to singleelectron redox chemistry, Synlett 27 (2016) 714–723.

[26] M.J. Frisch, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.

[27] D.S. Surry, S.L. Buchwald, Dialkylbiaryl phosphines in Pd-catalyzed amination: a

user’s guide, Chem. Sci. 2 (2011) 27–50.

[28] R. Dorel, C.P. Grugel, A.M. Haydl, The Buchwald–Hartwig amination after 25years,

Angew. Chem. Int. Ed. 58 (2019) 17118–17129.

[29] T. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube,

K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Evidence and mechanism of efficient

thermally activated delayed fluorescence promoted by delocalized excited states,

Sci. Adv. 3 (2017), e1603282.

[30] D. Zhang, X. Song, A.J. Gillett, B.H. Drummond, S.T.E. Jones, G. Li, H. He, M. Cai,

D. Credgington, L. Duan, Efficient and stable deep-blue fluorescent organic lightemitting diodes employing a sensitizer with fast triplet upconversion, Adv. Mater.

32 (2020), 1908355.

[31] J. Wei, C. Zhang, D. Zhang, Y. Zhang, Z. Liu, Z. Li, G. Yu, L. Duan, Indolo[3,2,1-jk]

carbazole embedded multiple-resonance fluorophors for narrowband deep-blue

electroluminescence with EQE≈34.7 % and CIEy≈0.085, Angew. Chem. Int. Ed. 60

(2021) 12269–12273.

[32] J. Gibson, A.P. Monkman, T.J. Penfold, The importance of vibronic coupling for

efficient reverse intersystem crossing in thermally activated delayed fluorescence

molecules, Chemphyschem 17 (2016) 2956–2961.

[33] M.K. Etherington, J. Gibson, H.F. Higginbotham, T.J. Penfold, A.P. Monkman,

Revealing the spin–vibronic coupling mechanism of thermally activated delayed

fluorescence, Nat. Commun. 7 (2016) 13680.

[34] K. Urgin, R. Barhdadi, S. Condon, E. L´

eonel, M. Pipelier, V. Blot, C. Thobie-Gautier,

D. Dubreuil, Some mechanistic aspects of a nickel-catalyzed electrochemical crosscoupling between aryl halides and substituted chloropyridazines, Electrochim.

Acta 55 (2010) 4495–4500.

[35] N. Toriumi, K. Yamashita, N. Iwasawa, Metal-free photoredox-catalyzed

hydrodefluorination of fluoroarenes utilizing amide solvent as reductant, Chem.

Eur. J. 27 (2021) 12635–12641.

[36] The photophysical and electrochemical properties of 3a in NMP are estimated to be

similar to those observed in benzene (Table 1). See supporting information for the

details.

[37] Fluorescence quenching experiments of 3a indicated that the hydrodehalogenation

reaction in this work proceeded via oxidative quenching pathway. See supporting

information for the details.

10

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る