リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Generalizations of Bebiano-Lemos-Providência inequality (Theory of function spaces and related topics)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Generalizations of Bebiano-Lemos-Providência inequality (Theory of function spaces and related topics)

藤井, 正俊 京都大学

2023.05

概要

96
Generalizations of Bebiano-Lemos-Providencia inequality
iii# :iE~

::l,JU:!(~:k~ :g=,H:!!:~

Masatoshi Fujii Osaka Kyoiku University

mfujii@cc.osaka-kyoiku.ac.jp

:::. :::. c' 1i, ~ J].,,,-;:J].,, 1-- ~ r.JJ H J:: O)fl° JH,'lU~{'Fffl * >a:: _ljt f:: {'F JlHrU:: 115¥,~~:::. I:'.. f:: L, 19, {'F ffl * A iJ,
positive (A 2: 0) c'Ji:> Q /:'.. 1i,

(Ax,x)2:0

xEH

t ~, A> 0 c'~ L, 19, 1T:7Uc'g ;it_
t iJ, positive (A 2: 0) /::, iEJEfi!l:iJ' A> 0 t:~t:: fJ

-/J>J¾ fJ fl~:=:./:'../:'.. L, 19, if';¥/:, A iJ, positive iJ,~ invertible (1)
1:f, A iJ, '1-Fffe!.J.Efi!'l: (positive semidefinite) "c'Ji:> Q:::.

19, it::, §2:./:H~fFm* A,B t::J\"tVC A-B 2: 0 1::J:-::i··c {'Fffl*)l[a]i; A 2: B -/J>§~t=~A
~ tit 9, JR+ J::c'JE~ ~ tttdE~OO~

f

f:: J: Q functional calculus -/J>:::. (1)/ilf[Ji;>a::f!¥:B'9 Q, 9t~;b1:,

===>

A 2: B 2: 0
(!)/:'..~,

f

f(A) 2: f (B)

>a::fFffl*ljtfil.lJt.1,,,1,,,19, ¥00~/::~1,,,-c/i,
t ➔ t°' 11, a E

i'JZ(!)m~t~!ji:~iJ,§;□ Gti-c1,,,t9,

[O, 1] O)c 'f50)J-J., {'Jcffl~*~-Z..iv.>~o

imm', :=:.tttiLi:iwner-Heinzinequality /:'..115¥1:ftl,-C\,,'19, PJT(LH)c'~;bl,19, [29], [25], [32] ((LH)
/::)\"f9 Q Pedersen (1) Jlf.f!:t~lfiEa_ij /i, Appendix c'if./Hr L, 19,)
~-C, (LH) 1i/ Jv.l.;f~~f::J:Qf<,Jf[!l:t~~:EJl>a::lsJ-::i-C\,,'i9o [12], [22] {-l;;~i¥]td.,(1)iJ,, '/7{(1) ArakiCordes ;f~~ (AC) c'9 :

IIBtAtBtll::; IIBABllt for O::; t::; 1.
(AC) 1i, '/7{(1) J: -5 /:: t ~%-r:- ~ 19 :
(AC-1) IIBtAtBtll 2: IIBABW fort 2: 1.
(AC-2) IIAtBtll::; IIABllt for 0::; t::; 1.
(AC)

*lli1ic'1i, norm ;f~~(!):JJl"l-/J> G, Li:iwner-Heinz ~~;i:\;(1)~:!ll'>a:: Jll. -C 1,,, ~ t:: \,,' /:'.. ,W,1,,, 19o f:(!)f::


o/

7

'a::= =1:: lie l,-C ;l=:i' ~ t:: \,, \ t ,w, \, \ *9o
Ando-Hiai inequality

Li:iwner-Heinz inequality

Grand Furuta inequality

Furuta inequality

BLP inequality --+ Grand BLP inequality

97

f(x)

ii{'Fffl •-¥t!,J
"'*9:

=

u O)~l31,00~lU:: 1Jl¥iln--c 1,, t 9, tJ: B,

C, B

~

{'Fffl •-¥t!,J ii, l'JZO) 3 ~{lf'~i11lJtc: 9

2 J][jjfi~~ g

D =;- A u B ~ C u D
=;- An u Bn +Au B
Transformer inequality: T* (A u B)T ~ (T* AT) u (T* BT) for all T
A

Monotonicity:

~

l u x

Upper semi-continuity: An+ A, Bn
(Normalization:

+B

1 u l)

A#B =

t

tJ:

../AB

I? i9,

~;B,~£~~~

~~0)~5~9~~1'.)t~•~·~~-~~:¾'l,~O)~~~<,

m•fi~~~~L~-~ntL~:~B20~ML--C,
A#B=max{X20;
S:. S:. ~, A iJ! invertible ~ Ji) 7-i

(1 !)

20}

t 9 7-i t,

{c}

A-½BA-½ 2 (A-½xA-½)2

⇒ (A-½BA-½)½ 2 A-½xA-½
{c}

A½(A-½BA-½)½A½ 2 X

A# B = A½(A-½BA-½)½A½
t, Tm'.

a=½

O)~f::::Ji!l,3-L--c1,,t9,

*~•~·~#~~

98
{'PJ'lHMlfiiJ-¥:1:$J~f!£-::i t::;f~AO)!!!rnY.fliJt~:t 0) t VC ~ii-Bi'i-;f~Ailtl_lHf Gnt 9o Ando-Hiai [2]
/::: J::. 7.:, log-majorization theorem ii, 1XO) J::. -5 /:::*~ti -C ~, ;l': 9: a E [0, 1] t iDE'fiB'.fl'JU A, B /:::xt
l.,-C'
(A#a.BY >-(log) X #a.Br (r 2: 1)
i,i!J¾ IJ "fl--:;o t::. 6ilt~~/:::luEBJl~n-c~,7.:,0)/i, 1XO){'f'J'lHli;f~A

-C, Ando-Hiai inequality (AH) tl1'¥iin-c~,t9o (LH) 0)3iffi1,1!-tO)~iEBJlO)~~-C90
Proof of (AH).

ii\ aef.[0,1] /:::xtl.,-C, 2~}'.li[.
Aqa.B

= A½(A-½BA-½)a.A½ (A,B > 0)

~~,,\L.,190 C#a. t~i:l:Fil!~-C91,1\ ::.t,G0):15/:J:, {'pffl~-¥t~/:::/:J:t~IJ ii±lvo) .rJr-c, 1XO)~
~0:i:\~1!£ffi L, ;l': 9: AqaB = BQ1-a.A = B(B- 1Qa.-1A- 1)B
~-Cf.ixJEi:l:, 1XO)J::. -5 /:::~~~tl,;l':9: A #a.B s 1 {cc} ca.= (A-½BA-½)°' s A- 1 {cc} c-a 2 A
::_ O)r-C:i.R9-"q~- ::_ t /:J:, r = l + E (E E [0, l]) /:::xt l.,-C,
Ar#a.Br = A½(A' #a. A-½Br A-½)A½ S 1

(1) c-a 2 A /::: (LH) ~~ffl l.,-C, A' S c-a, 1,1!:fri,i> I) i 9o
(2) J::112.0)0:i:\~1!£~',
A-½Br A-½= A-½(A½cA½)" A-½= A- 1 Qr C = C(c- 1 #r-1 A)C

=

C(c- 1 #,

:/Jt-::i-C, A' #a A-½Br A-½ S c-m #a

A)c

s C(c-1 #, c-a.)c = c< 1-a.J,+1

C{l-a)<+l

= ca. S A- 1 J::. I)

Ar#a.Br = A½(A' #a. A-½Br A-½)A½ S A½A- 1A½ = 1

{'Fffl*~{iiJ-,P:t~ ~{!£-j ::. t /::: J::. I)' J::. I) ~~,:frtfi1,1!·c-~ 7.:,~J t l.,-C' ifal;f~;i:\~~tf Q::. t i,)!-C ~ Q
tJ~~'i9o iral;f~Ai:l:, 1XO)J::. -5 t~:t,O)-C91,1! (LH) O)~.)Jt~~f.llt'.{r.-Ctb 1J 190

(1 +r)q

Furuta Inequality (FI)
If A 2 B 2 0, then for each r 2 0,

(i)
and
(ii)
hold for p 2 0 and q 2 1 with (1

+ r)q 2 p + r.

= p+ r

99
Furuta inequality t::::009 Q ::,tilkii, [20], [21], [10], [11], [36], [16] f.t: t''1$,ttl:::;bt:: IJ 19o
(FI) ii, N*~flf:l::::t:,1t,-c~%~:ft0) t ~iJ,.t!ft:~-C.\ -t":h'a:'. a-geometric mean 'a:'.Jtllt''"C-t":hHi

9t~OJ~5~m~tt~G:h;Jc:9:
If A :::> B :::> 0, then for each r :::> 0

A-r #1+r BP::=; A
p+r

holds for p :::, L

Satellite of (FI) (SFI) If A :::> B :::> 0, then for each r :::> 0
A-r #1±:. BP:::; B (:::; A)
p+r

holds for p :::> L

If log A :::> log B for A, B > 0, then

A-r #Hr BP::=; B
p+r

holds for p :::, 1 and r :::, 0,
log A:::> logB ii, chaotic order t~i£:h-c1t,;Jc:9iJ>, logt 'h>{'Pffl*lj!w,llt.t:0)-C, A:::> B(> 0) ~ IJ ~

*

*

ma%

9
/i, A » B t ~ ~ :h 9
(SFI) 'a:'. ffi9f:: ~ O)Jj)j:~iJ', 1JZOJii'l:EmlOJ/f~~c-9-C

It' /i!ftff ,:::: t.t:-::, L It'

0

0

)

(FI) for chaotic order. If log A :::, log B for A, B > 0, then

holds for p :::> 0, q :::> 1 and r :::> 0 such that rq:::, p

+ r,

q
rq

______,_ ____,,__ _ _ _
1

-r

(CFI) If A» B for A, B > 0, then

~

= p+ r

_ __. p

100
holds for p 2 0 and r 2 0.

logx)n
( 1+-----;;-+x

(n-+oo)

O):;j;UJ'fH:::ib f? 19, A~ B r:::X'f"L.,-c
log A B _
log B
A n -_ 1 + --,
n - 1 + -n

t :B< t, An 2 Bn (n = 1,2, · · ·)
ti G r:::Jt Ve (FI) 'a'.Jfi1!ffl9 Qt,

/:::t~ f) 19, .'IIBJE-C9;1Ji', (FI)
~

-c fiJ,;zj!O)

~

n

Gr:, +51::kt.i:-Q n /:'.:-:Jl.'1~/i, An 2 Bn > 0 ;iJi'fiJtv:L.,19, ::.

t (CFI) /ilm{ii-CibQ::. t ;IJi',t;IJ, f) 19,

(SFI) O)fi'J*lffit

> 0, then

If log A 2 log B for A, B

A-r #1+r BP:::; B
p+r

holds for p ;::,: 1 and r 2 0.

Transposition: A#aB

= B#1-aA

Multipicativity: A#af3B

= A#a(A#(3B)

::.0)$-0liiO)--rc-_ uamJ:.r.,ffO)~f)~1,,tO)-C9:

by (Mp)
by (Tp)
by (CFI)

= J #1p BP= B.

101

BLP /:J:, Bebiano-Lemos-Providencia O)jffiJ'.("J'.i: .I& ·:d: {, 0)-c', flit G /:J: [4] /:: J'>v'--C{'j{O) J

Jv L. ~~:ft

H~~G* Gt::o
Bebiano-Lemos-Providencia inequality (BLP)

holds for A, B 2 0 and s 2 t 2 0.

Theorem 4.1. If A, B > 0, then

holds for p 2 1 ands 2 r 2 0.

...E...±...'.'. = 1

p(l+r)

'

r(p + s)
---=s

l+r

(BLP) iJ'fi G tl,Q;: t J: fJ 9;!l G tL* To
~B, {, -5 ~ I., p;j•fwi:~ x./;:f, {'.J{O){fpffl*~~A i: ~ I.,, -f O) norm ~~Alf& t I., --C Theorem 4.1 ;/J'{ft
ii:Mlt G ti,* To

Theorem 4.2. If A, B

> 0 satisfy A # 1p
8

BP+s S Al+• for some p 2 1 ands 2 0, then Bl+s S Al+s

and so Bl+r S Al+r for OS r S s.

;:O)~~:ft/:J:, (FI) 7J''?~iJ,ti,1To ~~- {&;E: A8 #1 BP+s

tt--c, 1&JE i:

s Al+s O)jjljJill/::fi!IT{)laiJ>G

<'XI::, (FI) t (AH) O)[m~:/'J!5i"t'ibQ Grand Furuta inequality (GFI) t:J:,
v'iT
Grand Furuta inequality (GFI) If A 2 B > 0 and t E [0, 1], then

holds for r 2 t and p, s 2 1.

A-½ i:ltl-

p

<'.J\O)J:

-5 ~~"t'~tf:\~tl,--C

102
(GFI) If A 2':: B > 0 and t E [O, 1], then

holds for r 2':: t and p, s 2':: 1.

;,)Zr:, (GFI) /::~J;t't7.i BLP ,f~ci'tO)-J!lH~~cjlf.:z -CJ:i-*'t, :Z:O)f:::.~/:, 1JZO){/pffl*,f~ci't~®L,
* 't, 'M~O).:. t. t.i::il• G, .:.ti/i Theorem 4.2 0) (GFI) IIBU:'Mt:::.-:, -c~, * 't,
Theorem 4.3. Suppose that A, B > 0 and t E [O, 1]. If Ar-tq1 (Arq1B(p-t)s+r) <:'. Al-t+r for some
p

P, s 2':: 1 and r 2':: t, then Bl-t+r <:'. A 1 -t+r.

'

Corollary 4.4. Suppose that A, B > 0 and t E [O, 1]. Then

holds for p, s 2':: 1 and r 2':: t.
Theorem 4.3 lJz r.J Corollary 4.4 --C, t = 0, s = 1 t. T 7-i t., Theorem 4.2 lJz r.J Theorem 4.1 -/J>f~ G ti

*T, *t:::.,

(GFI) t. (AH) 0)00~/i,
~

(GFI) fort= 1, r = s

(AH)

c'ib7.i.:. t. -/J>;b-/J>-:, -C ~' * TO)--C:, Theorem 4.3 --C, t = 1, s = r t. T 7-i t.,
Let r 2':: 1 be given. If Ar-l#1(Ar#1Bpr) <:'. Ar for some p 2':: 1, then Br<:'. Ar.
p

r

A- 1 #1(I

#1

A-~Bpr A-~)<:'. I

r

P

i,

°6 G /::, Cl'.=
B1 = (A-~Bpr A-~)~ t_ J:, *"1lli Br<:: N /;L Br= (A~BiA~)a ~ iJ,

1961 -4:,

B1

<:'. I t.~~f!J!;z G:h* T, -1J,

Nakamura and Umegaki [31] ti,
S(A) = -AlogA

/:: ~-:, -C, {/pffi*.:r.:,, t- O !::"-~~Al,* l, t:::., :Z:0)1~, f'pffi*'Jlf;,JO)f_llli0)9£/:!!!0)r--C, 1989 -4:, J-I
Fujii and Kamei [9] /:: ~ iJ, {'Fffi*;j:lcf:Srt.:r.:,, t- O 1::"--/J>
S(AIB) = A½ log(K½BA-½)A½

103

S(AII) = S(A) = -AlogA

J:: fJ 9;11 G:hi 9o t~;B, f'FJlHltffixt.r.:,, J-. P
[38] Ii, Tsallis {/pffl*f§xt.r.:,, J-. P ~ -

~-0)

§~t~ili{.GU: L,--c, Yanagi, Kuriyama and Furuichi
E [0, 1]) ~~AL, i L,f;:: :

Ta(Pla) (a

Ta(Pla) = P #a a - P
a

Ta(Pla)

--1-

S(pla) (a

d(p #a a) I

da

:1/&f&r:::, fFJij*f§xj.r.:,, r- P

--1-

O);

- S( I )

a=O -

Pa

1:'.. -1:::0097., BLP inequality /:::--:J1,,--c,
ii'\ (CFI) O)}it,fflt L,--c, J'.XO)::f~AiJtfijG:hi9o
0

~x. --CJJ.f;::1,,c:,l[l.t1,,i90

> 0 and r > 0 be given. Then, if S(ArlAP+r) 2 S(A'IBP+r)
for some p > 0, then A' 2 Br.

Theorem 5.1. Let A, B

Proof.

ii\ ~S(ArlBP+r) = A~ log(A-~ BP+r A-~);; A~

t~O)""C,

{.&'.
J'.XO)

J:: 5 r::: 131,,~x_ G:h

i9o
r

r

1

log A 2 log(A-2BP+r A-2),.

~::.--c,

B 1 =(A-~BP+rA-~)it:B
Theorem 5.2. Let A, B > 0 and t, r 2 0 be given. Then, if

S(At+'IAP+t+r) 2 S(At+'IAr q¼ B(p+t)s+r)

holds for some p, s > 0 with (p

+ t)s 2 t, then

At+r

2 Bt+r.

If A» X for A,X > 0, then
A

(p+t)s+r

q

r

t

t

r

!

2[A2(A2XPA2) 8 A2]q

holds for p,t,r,s 2 0, q 2 l with (t+r)q 2 (p+t)s+r.

(CFI)J::fJ

104
.:.:ti,J: fJ, q = (p~2~+r and X
~~'a::ffi\i'Q t,

[A-'tr (Ar Q1 B(p+t)s+r)A-'trJ½ t l.,"Ll::1120) (GFI) j!i'l_O){/pffl~::f

=

s

t

r

t

r

-----1±.!:__

At+r 2". ...

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る