リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Augmentation of an Engineered Bacterial Strain Potentially Improves the Cleanup of PCB Water Pollution」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Augmentation of an Engineered Bacterial Strain Potentially Improves the Cleanup of PCB Water Pollution

Hara, Tomijiro Takatsuka, Yumiko Nakata, Eiji Morii, Takashi 京都大学 DOI:10.1128/spectrum.01926-21

2021.12

概要

Polychlorinated biphenyls (PCBs) are recalcitrant organohalide pollutants, consisting of 209 congeners. PCB cleanup in natural landscapes is expected to be achieved by the metabolic activity of microorganisms, but aerobic PCB-degrading bacteria that inhabit sites polluted by PCBs cannot degrade all PCB congeners due to the specificity of their enzymes. In this study, we investigated the degradability of PCBs when a genetically modified PCB-degrading bacterium was compounded with wild-type PCB-degrading bacteria. We used two bacterial strains, Comamonas testosteroni YAZ2 isolated from a PCB-uncontaminated natural landscape and Escherichia coli BL21(DE3) transformed with a biphenyl dioxygenase (BphA) gene from a well-known PCB degrader, Burkholderia xenovorans LB400. The enzymatic specificities of BphA were 2, 3-dioxygenation in the YAZ2 and 2, 3- and 3, 4-dioxygenations in the recombinant E. coli. For the PCB-degrading experiment, a dedicated bioreactor capable of generating oxygen microbubbles was prototyped and used. The combined cells of the recombinant and the wild-type strains with an appropriate composite ratio degraded 40 mg/L of Kaneclor KC-300 to 0.3 ± 0.1 mg/L within 24 h. All of the health-toxic coplanar PCB congeners in KC-300 were degraded. This study suggested that the augmentation of an engineered bacterial strain could improve the cleanup of PCB water pollution. It also revealed the importance of the ratio of the strains with different PCB-degrading profiles to efficient degradation and that the application of oxygen microbubbles could rapidly accelerate the cleanup.

この論文で使われている画像

参考文献

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Hara et al.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Volume 9 Issue 3 e01926-21

34.

35.

36.

37.

38.

39.

40.

41.

42.

eutrophus H850. Appl Environ Microbiol 53:1103–1112. https://doi.org/10

.1128/aem.53.5.1103-1112.1987.

Sakai M, Ezaki S, Suzuki N, Kurane R. 2005. Isolation and characterization

of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus

sp. KBC101. Appl Microbiol Biotechnol 68:111–116. https://doi.org/10

.1007/s00253-004-1848-3.

Pieper DH. 2005. Aerobic degradation of polychlorinated biphenyls. Appl

Microbiol Biotechnol 67:170–191. https://doi.org/10.1007/s00253-004-1810-4.

Zhu L, Zhou J, Zhang R, Tang X, Wang J, Li Y, Zhang Q, Wang W. 2020. Degradation mechanism of biphenyl and 4–4'-dichlorobiphenyl cis-dihydroxylation

by non-heme 2,3 dioxygenases BphA: a QM/MM approach. Chemosphere

247:125844. https://doi.org/10.1016/j.chemosphere.2020.125844.

Kumar P, Mohammadi M, Dhindwal S, Pham TT, Bolin JT, Sylvestre M.

2012. Structural insights into the metabolism of 2-chlorodibenzofuran by

an evolved biphenyl dioxygenase. Biochem Biophys Res Commun 421:

757–762. https://doi.org/10.1016/j.bbrc.2012.04.078.

Wagner-DöBler I, Bennasar A, Vancanneyt M, StröMpl C, BrüMmer I,

Eichner C, Grammel I, Moore ERB, 1998. Microcosm enrichment of

biphenyl-degrading microbial communities from soils and sediments.

Appl Environ Microbiol 64:3014–3022. https://doi.org/10.1128/AEM.64.8

.3014-3022.1998.

Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS. 2006.

Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees

in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342.

https://doi.org/10.1128/AEM.72.4.2331-2342.2006.

Shuai J, Yu X, Zhang J, Xiong AS, Xiong F. 2016. Regional analysis of

potential polychlorinated biphenyl degrading bacterial strains from

China. Braz J Microbiol 47:536–541. https://doi.org/10.1016/j.bjm.2014.12

.001.

Kimbara K, Hashimoto T, Fukuda M, Koana T, Takagi M, Oishi M, Yano K.

1988. Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agric Biol Chem 52:2885–2891. https://doi.org/10

.1080/00021369.1988.10869161.

Hara T. 2005. Oxidative degradation mechanism of endocrine disruptor

by Comamonas testosteroni YAZ2, pp 318–323. In Yodoi J, Heike T (ed),

Igaku no Ayumi extra issue: redox up date. Ishiyaku Publishers, Inc., Tokyo, Japan.

MicrobiolSpectrum.asm.org

16

Downloaded from https://journals.asm.org/journal/spectrum on 31 May 2022 by 130.54.110.24.

23.

their use for bioaugmentation strategy in microcosms. J Basic Microbiol

54:253–260. https://doi.org/10.1002/jobm.201200369.

Ahmed M, Focht DD. 1973. Degradation of polychlorinated biphenyls by

two species of Achromobacter. Can J Microbiol 19:47–52. https://doi.org/

10.1139/m73-007.

Vezina J, Barriault D, Sylvestre M. 2008. Diversity of the C-terminal portion

of the biphenyl dioxygenase large subunit. J Mol Microbiol Biotechnol 15:

139–151. https://doi.org/10.1159/000121326.

Iwasaki T, Takeda H, Miyauchi K, Yamada T, Masai E, Fukuda M. 2007.

Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1. Biosci Biotechnol

Biochem 71:993–1002. https://doi.org/10.1271/bbb.60663.

Barriault D, Plante MM, Sylvestre M. 2002. Family shuffling of a targeted bphA

region to engineer biphenyl dioxygenase. J Bacteriol 184:3794–3800. https://

doi.org/10.1128/JB.184.14.3794-3800.2002.

Barriault D, Sylvestre M. 2004. Evolution of the biphenyl dioxygenase

BphA from Burkholderia xenovorans LB400 by random mutagenesis of

multiple sites in region III. J Biol Chem 279:47480–47488. https://doi.org/

10.1074/jbc.M406805200.

Li J, Min J, Wang Y, Chen W, Kong Y, Guo T, Mahto JK, Sylvestre M, Hu X.

2020. Engineering Burkholderia xenovorans LB400 BphA through sitedirected mutagenesis at position 283. Appl Environ Microbiol 86:e0104020. https://doi.org/10.1128/AEM.01040-20.

Shumkova ES, Egorova DO, Boronnikova SV, Plotnikova EG. 2015. Polymorphism of the bphA genes in bacteria destructing biphenyl/chlorinated biphenils. Mol Biol 49:569–580. https://doi.org/10.1134/S0026893315040159.

Li H, Hu L, Song D, Lin F. 2014. Characteristics of micro-nano bubbles and

potential application in groundwater bioremediation. Water Environ Res

86:844–851. https://doi.org/10.2175/106143014x14062131177953.

Tao W, Mei C, Hamzah N. 2020. The application of surfactant colloidal gas

aphrons to remediate contaminated soil: a review. J Contam Hydrol 231:

103620. https://doi.org/10.1016/j.jconhyd.2020.103620.

Huang Z, Chen Q, Yao Y, Chen Z, Zhou J. 2021. Micro-bubbles enhanced

removal of diesel oil from the contaminated soil in washing/flushing with

surfactant and additives. J Environ Manage 290:112570. https://doi.org/

10.1016/j.jenvman.2021.112570.

Bedard DL, Haberl ML, May RJ, Brennan MJ. 1987. Evidence for novel

mechanisms of polychlorinated biphenyl metabolism in Alcaligenes

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る