リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A universal tool for predicting differentially active features in single-cell and spatial genomics data」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A universal tool for predicting differentially active features in single-cell and spatial genomics data

Vandenbon, Alexis Diez, Diego 京都大学 DOI:10.1038/s41598-023-38965-2

2023.07.22

概要

With the growing complexity of single-cell and spatial genomics data, there is an increasing importance of unbiased and efficient exploratory data analysis tools. One common exploratory data analysis step is the prediction of genes with different levels of activity in a subset of cells or locations inside a tissue. We previously developed singleCellHaystack, a method for predicting differentially expressed genes from single-cell transcriptome data, without relying on comparisons between clusters of cells. Here we present an update to singleCellHaystack, which is now a universally applicable method for predicting differentially active features: (1) singleCellHaystack now accepts continuous features that can be RNA or protein expression, chromatin accessibility or module scores from single-cell, spatial and even bulk genomics data, and (2) it can handle 1D trajectories, 2-3D spatial coordinates, as well as higher-dimensional latent spaces as input coordinates. Performance has been drastically improved, with up to ten times reduction in computational time and scalability to millions of cells, making singleCellHaystack a suitable tool for exploratory analysis of atlas level datasets. singleCellHaystack is available as packages in both R and Python.

この論文で使われている画像

参考文献

1. Miao, Z., Deng, K., Wang, X. & Zhang, X. DEsingle for detecting three types of differential expression in single-cell RNA-seq data.

Bioinformatics 34, 3223–3224 (2018).

2. Nabavi, S., Schmolze, D., Maitituoheti, M., Malladi, S. & Beck, A. H. EMDomics: A robust and powerful method for the identification of genes differentially expressed between heterogeneous classes. Bioinformatics 32, 533–541 (2016).

3. Korthauer, K. D. et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome

Biol. 17, 1–15 (2016).

4. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to

biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).

5. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

6. Finak, G. et al. MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in

single-cell RNA sequencing data. Genome Biol. 16, 1–13 (2015).

7. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions,

technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

8. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15,

255–261 (2018).

9. Wang, T., Li, B., Nelson, C. E. & Nabavi, S. Comparative analysis of differential gene expression analysis tools for single-cell RNA

sequencing data. BMC Bioinform. 20, 6 (2019).

10. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220

(2021).

11. Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).

12. Dries, R. et al. Giotto: A toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 1–31 (2021).

13. Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods

15, 339–342 (2018).

14. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: Identification of spatially variable genes. Nat. Methods 15, 343–346 (2018).

15. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nat.

Methods 17, 193–200 (2020).

16. Zhu, J., Sun, S. & Zhou, X. SPARK-X: Non-parametric modeling enables scalable and robust detection of spatial expression patterns

for large spatial transcriptomic studies. Genome Biol. 22, 1–25 (2021).

17. Miller, B. F., Bambah-Mukku, D., Dulac, C., Zhuang, X. & Fan, J. Characterizing spatial gene expression heterogeneity in spatially

resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Res. 31, 1843–1855 (2021).

18. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 1–35 (2020).

19. Vandenbon, A. & Diez, D. A clustering-independent method for finding differentially expressed genes in single-cell transcriptome

data. Nat. Commun. 11, 1–10 (2020).

20. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat. Biotechnol. 39,

313–319 (2021).

21. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

22. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. U.S.A. 116, 19490–19499 (2019).

23. Vandenbon, A. Evaluation of critical data processing steps for reliable prediction of gene co-expression from large collections of

RNA-seq data. PLoS ONE 17, 1–18 (2022).

24. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

25. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

26. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol.

37, 685–691 (2019).

27. Gayoso, A. et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163–166 (2022).

28. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

29. Han, X. et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 172, 1091–1097 (2018).

30. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, 6518 (2020).

31. Li, H., Calder, C. A. & Cressie, N. Beyond Moran’s I: Testing for spatial dependence based on the spatial autoregressive model.

Geogr. Anal. 39, 357–375 (2007).

32. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

33. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

34. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

35. Dolgalev, I. msigdbr: MSigDB Gene Sets for Multiple Organisms in a Tidy Data Format (2022).

36. Joseph, V. R. Space-filling designs for computer experiments: A review. Qual. Eng. 28, 28–35 (2016).

37. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18,

1333–1341 (2021).

38. SeuratData GitHub repository. https://​github.​com/​satij​alab/​seurat-​data.

39. Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 11, 94 (2010).

Scientific Reports |

(2023) 13:11830 |

https://doi.org/10.1038/s41598-023-38965-2

13

Vol.:(0123456789)

www.nature.com/scientificreports/

40. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods.

Biostatistics 8, 118–127 (2007).

Acknowledgements

The authors would like to thank Y. Harada for secretarial assistance.

Author contributions

A.V. conceived of the project and methodology. A.V. and D.D. implemented the methods, ran the analyses and

wrote the manuscript. All authors contributed to critical revision of the manuscript.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP20K06609 (A.V.) and JP20K07538 (D.D.), and

by an Office of Directors’ Research Grant provided by the Institute for Life and Medical Sciences (Kyoto University). The funders had no role in study design, data collection and analysis, decision to publish, or preparation

of the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​38965-2.

Correspondence and requests for materials should be addressed to A.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

Vol:.(1234567890)

(2023) 13:11830 |

https://doi.org/10.1038/s41598-023-38965-2

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る