リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Challenges toward achieving a successful hydrogen economy in the US: Potential end-use and infrastructure analysis to the year 2100」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Challenges toward achieving a successful hydrogen economy in the US: Potential end-use and infrastructure analysis to the year 2100

Bridgeland, Rhea Chapman, Andrew McLellan, Benjamin Sofronis, Petros Fujii, Yasumasa 京都大学 DOI:10.1016/j.clpl.2022.100012

2022.12

概要

Fossil fuels continue to exacerbate climate change due to large carbon emissions resulting from their use across a number of sectors. An energy transition away from fossil fuels seems inevitable, and energy sources such as renewables and hydrogen may provide a low carbon alternative for the future energy system, particularly in large emitting nations such as the United States. This research quantifies and maps potential hydrogen fuel distribution pathways for the continental US, reflecting technological changes, barriers to deployment, and end-use-cases from 2020 to 2100, clarifying the potential role of hydrogen in the US energy transition. The methodology consists of two parts, a linear optimization of the global energy system constrained by carbon reduction targets and system cost, followed by a projection of hydrogen infrastructure development. Key findings include the emergence of trade pattern diversification, with a greater variety of end-uses associated with imported fuels and greater annual hydrogen consumption over time. Further, sensitivity analysis identified the influence of complementary technologies including nuclear power and carbon capture and storage technologies. We conclude that hydrogen penetration into the US energy system is economically viable and can contribute toward achieving Paris Agreement and more aggressive carbon reduction targets in the future.

この論文で使われている画像

参考文献

Agnolucci, P., Mcdowall, W., 2013. Designing future hydrogen infrastructure: insights from analysis at different spatial scales. Int. J. Hydrogen Energy 38, 5181–5191. https://doi.org/10.1016/j.ijhydene.2013.02.042.

Allen, F., Krahnen, J.P., Rey, H., 2017. Financial resilience revisited: why consistency in regulation is now paramount-across sectors and regions, and over time letter. SAFE Pol. Lett. 1–6.

Alternative Fuels and Advanced Vehicles Data Center, 2014. Alternative fuel Excise tax credit [WWW Document]. http://www.afdc.energy.gov/afdc/laws/law/US/319.

Andersson, J., Gro¨nkvist, S., 2019. Large-scale storage of hydrogen. Int. J. Hydrogen

Energy 44, 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063.

Association, W.N., 2021. Nuclear power in Ukraine 6. https://www.world-nuclear.org/in formation-library/country-profiles/countries-g-n/japan-nuclear-power.aspx.

Balali, Y., Stegen, S., 2021. Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew. Sustain. Energy Rev. 135, 110185 https://doi.org/10.1016/j.rser.2020.110185.

Basri, S., Kamarudin, S.K., 2021. Direct dimethyl ether fuel cells (DDMEFCs). Direct Liq.

Fuel Cell. 177–189. https://doi.org/10.1016/b978-0-12-818624-4.00008-x.

Bünger, U., 2014. Hydrogen storage as part of energy chain. Overv. Tentat. Results HyUnder. Proj.

Chandra, A., Thodla, R., Prewitt, T.J., Matthews, W., Sosa, S., 2021. Fatigue crack growth study of X70 line pipe steel in hydrogen containing natural gas blends. Am. Soc.

Mech. Eng. Press. Vessel. Pip. Div. PVP 4. https://doi.org/10.1115/PVP2021-61821.

Change, C., 2007. The physical science basis. Contrib. Work.

Chapman, A., Itaoka, K., Farabi-Asl, H., Fujii, Y., Nakahara, M., 2020a. Societal penetration of hydrogen into the future energy system: impacts of policy, technology and carbon targets. Int. J. Hydrogen Energy 45, 3883–3898. https://doi.org/ 10.1016/j.ijhydene.2019.12.112.

Chapman, A., Nguyen, D.H., Farabi-Asl, H., Itaoka, K., Hirose, K., Fujii, Y., 2020b.

Hydrogen penetration and fuel cell vehicle deployment in the carbon constrained future energy system. IET Electr. Syst. Transp. 10, 409–416. https://doi.org/ 10.1049/iet-est.2020.0014.

Chaube, A., Chapman, A., Shigetomi, Y., Huff, K., Stubbins, J., 2020. The role of hydrogen in achieving long term Japanese energy system goals. Energies 13, 1–17. https://doi.org/10.3390/en13174539.

Chiaramonti, D., Prussi, M., Rizzo, A.M., 2019. Biopower technologies, POWER ENGINEERING advances and challenges. https://doi.org/10.1201/9781315202105

-10.

Code, A., Piping, P., 2011. Hydrogen piping and pipelines hydrogen piping and pipelines [WWW Document]. https://www.asme.org/codes-standards/find-codes-standards/ b31-12-hydrogen-piping-pipelines.

Dadfarnia, M., Sofronis, P., Brouwer, J., Sosa, S., 2019. Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen. Int. J. Hydrogen Energy 44, 10808–10822. https://doi.org/10.1016/j. ijhydene.2019.02.216.

De Santoli, L., Paiolo, R., Lo Basso, G., 2017. An overview on safety issues related to hydrogen and methane blend applications in domestic and industrial use. Energy Proc. 126, 297–304. https://doi.org/10.1016/j.egypro.2017.08.224.

de Vries, H., Levinsky, H.B., 2020. Flashback, burning velocities and hydrogen admixture: domestic appliance approval, gas regulation and appliance development. Appl. Energy 259, 114116. https://doi.org/10.1016/j.apenergy.2019.114116.

de Vries, H., Mokhov, A.V., Levinsky, H.B., 2017. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: interchangeability analysis for domestic appliances. Appl. Energy 208, 1007–1019. https://doi.org/10.1016/j. apenergy.2017.09.049.

Dincer, I., Bicer, Y., 2020. Enhanced dimensions of integrated energy systems for environment and sustainability. Integr. Energy Syst. Multigeneration 403–440. https://doi.org/10.1016/b978-0-12-809943-8.00007-8.

Driver, C., 2020a. 2020 Toyota Mirai.

Driver, C., 2020b. 2020 Tesla Model 3. Car Driv.

Eberle, C., Siebeneck, J., Münstermann, N., 2019. Carbon Colonialism: a postcolonial assessment of carbon offsetting. https://doi.org/10.13140/RG.2.2.36509.05602.

EIA, 2014. Underground natural gas storage capacity [WWW Document]. Energy Inf.

Adm. URL. https://www.eia.gov/naturalgas/storagecapacity/.

EIA, 2021. Hydrogen explained [WWW Document]. U.S. Energy inf. Adm. https://www. eia.gov/energyexplained/hydrogen/.

EPA, 2011. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009. Federal Register.

Erickson, L.E., Brase, G., 2019. Paris agreement on climate change. Reducing Greenh. Gas Emiss. Improv. Air Qual. 11–22 https://doi.org/10.1201/9781351116589-2.

Etienne, J., 2015. Studying consistency in regulatory work : concepts and options. Food Stand. Agency 1–9.

Fuel Cell and Hydrogen Energy Association, 2020. Road Map to a US Executive Summary Reducing Emissions and Driving Growth across the Nation, pp. 1–20.

Galich, A., Marz, L., 2012. Alternative energy technologies as a cultural endeavor: a case study of hydrogen and fuel cell development in Germany. Energy. Sustain. Soc. 2, 1–10. https://doi.org/10.1186/2192-0567-2-2.

Global Wind Energy Council, 2014. Global Wind Energy Outlook 2014. Global Wind Energy Council.

Gondal, I.A., Sahir, M.H., 2012. Prospects of natural gas pipeline infrastructure in hydrogen transportation. Int. J. Energy Res. 36, 1338–1345. https://doi.org/ 10.1002/er.1915.

Haeseldonckx, D., n.d. The Use of the Natural-Gas Pipeline Infrastructure for Hydrogen Transport in A Changing Market Structure Dries Haeseldonckx , William D ’ haeseleer.

Hermesmann, M., Müller, T.E., 2022. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Prog. Energy Combust. Sci. 90, 100996 https://doi.org/10.1016/j.pecs.2022.100996.

Institute, W.R., n.d. Building Energy Efficiency and Energy Assistance : Creating Jobs and Providing Relief to States across the Country 1–4.

International Renewable Energy Agency, 2022. Hydrogen Economy Hints at New Global Power Dynamics.

Jaganmohan, M., 2021. Number of Hydrogen Fuel Stations in the U.S. 2019-2030 by type.

Jain, I.P., Lal, C., Jain, A., 2010. Hydrogen storage in Mg: a most promising material. Int.

J. Hydrogen Energy 35, 5133–5144. https://doi.org/10.1016/j. ijhydene.2009.08.088.

Jones, D.R., Al-Masry, W.A., Dunnill, C.W., 2018. Hydrogen-enriched natural gas as a domestic fuel: an analysis based on flash-back and blow-off limits for domestic natural gas appliances within the UK. Sustain. Energy Fuels 2, 710–723. https://doi. org/10.1039/c7se00598a.

Karkour, S., Ichisugi, Y., Abeynayaka, A., Itsubo, N., 2020. External-cost estimation of electricity generation in G20 countries: case study using a global life-cycle impact- assessment method. Sustain. Times 12. https://doi.org/10.3390/su12052002.

Korb, B., Kawauchi, S., Wachtmeister, G., 2016. Influence of hydrogen addition on the operating range, emissions and efficiency in lean burn natural gas engines at high specific loads. Fuel 164, 410–418. https://doi.org/10.1016/j.fuel.2015.09.080.

Ladewig, B.P., Asquith, B.M., Meier-Haack, J., 2015. Membranes for direct methanol fuel cells. Mater. Low Temp. Fuel. https://doi.org/10.1002/9783527644308.ch05. Cells 111–124.

Leicher, J., Nowakowski, T., Giese, A., Go¨rner, K., 2017. Power-to-gas and the

consequences: impact of higher hydrogen concentrations in natural gas on industrial combustion processes. Energy Proc. 120, 96–103. https://doi.org/10.1016/j. egypro.2017.07.157.

Liu, W., Sun, L., Li, Z., Fujii, M., Geng, Y., Dong, L., Fujita, T., 2020. Trends and future challenges in hydrogen production and storage research. Environ. Sci. Pollut. Res. 27, 31092–31104. https://doi.org/10.1007/s11356-020-09470-0.

Mayer, J.N., Philipps, S., Hussein, N.S., Schlegl, T., Senkpiel, C., 2015. Current and Future Cost of Photovoltaics Long-Term Scenarios for Market Development.

McKinsey, 2010. A Portfolio of Power-Trains for Europe: a Fact-Based Analysis - the Role of Battery Electric Vehicles, Plug-In Hybrids and Fuel Cell Electric Vehicles. Fuel Cell.

McPherson, M., Johnson, N., Strubegger, M., 2018. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl.

Energy 216, 649–661. https://doi.org/10.1016/j.apenergy.2018.02.110.

Melaina, M.W., O. Antonia, M.P., 2013. Blending hydrogen into natural gas pipelines networks: a review of key issues. Tec. Rep. https://doi.org/10.2172/1068610.

NREL/TP-500-51995.

Møller, K.T., Jensen, T.R., Akiba, E., Li, wen, H., 2017. Hydrogen - a sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 27, 34–40. https://doi.org/10.1016/j. pnsc.2016.12.014.

Moreno-Benito, M., Agnolucci, P., Papageorgiou, L.G., 2017. Towards a sustainable hydrogen economy: optimisation-based framework for hydrogen infrastructure development. Comput. Chem. Eng. 102, 110–127. https://doi.org/10.1016/j. compchemeng.2016.08.005.

Mori, D., Hirose, K., 2009. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int. J. Hydrogen Energy 34, 4569–4574. https://doi.org/10.1016/j. ijhydene.2008.07.115.

Nibur, K.A., Marchi, C.S., Somerday, B.P., 2010. Fracture and fatigue tolerant steel pressure vessels for gaseous hydrogen. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 6, 949–958. https://doi.org/10.1115/PVP2010-25827.

NREL, 2020. The Technical and Economic Potential of the H2@Scale Hydrogen Concept within the United States.

Office of Energy Efficiency and Renewable Energy: Hydrogen and Fuel Cell Technologies Office, 2021. Safety , codes and standards [WWW Document]. https://www.energy. gov/eere/fuelcells/safety-codes-and-standards.

O’Callaghan-Gordo, C., Orta-Martínez, M., Kogevinas, M., 2016. Health effects of non- occupational exposure to oil extraction. Environ. Heal. A Glob. Access Sci. Source 15, 1–4. https://doi.org/10.1186/s12940-016-0140-1.

Pipeline Safety Trust, 2015. Pipeline basics & specifics about natural gas pipelines.

Pipeline Saf. Trust 1–7.

Pluvinage, G., 2021. Mechanical properties of a wide range of pipe steels under influence of pure hydrogen or hydrogen blended with natural gas. Int. J. Pres. Ves. Pip. 190, 104293 https://doi.org/10.1016/j.ijpvp.2020.104293.

Pompeu, N.B., 2021. Air Pollution and the Health Cost of Coal, pp. 1–6.

Quarton, C.J., Samsatli, S., 2020. Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation. Appl. Energy 275, 115172. https://doi. org/10.1016/j.apenergy.2020.115172.

Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W.R., Zhou, N., Elliott, N.,

Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S.A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E.D., de la Rue du Can, S., Sisson, B., Williams, M., Katzenberger, J., Burtraw, D., Sethi, G., Ping, H., Danielson, D., Lu, H., Lorber, T., Dinkel, J., Helseth, J., 2020. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848. https://doi.org/10.1016/j. apenergy.2020.114848.

Ritchie, H., Roser, M., 2020. Renewable Energy - Our World in Data. Our World Data. Shell, Gasoline, P., About, Q., Station, R., 2021. Gas stations near me [WWW Document].

https://www.shell.us/motorist/gas-station-near-me.html.

Soraghan, M., 2021. Hydrogen could fuel U.S. energy transition. But is it safe? [WWW Document]. E&E News Energy Wire. https://www.eenews.net/articles/hydrogen

-could-fuel-u-s-energy-transition-but-is-it-safe/.

State and Trends of Carbon Pricing 2019, 2019. State and Trends of Carbon Pricing 2019. https://doi.org/10.1596/978-1-4648-1435-8.

Tengborg, P., J.Johansson, J.G.D., 2014. STorage of highly compressed gases in underground Lined Rock Caverns- More than 10 years of experience. Proc. world tunneal Congr. 1–7.

The National Academy of Engineering, 2004. The Hydrogen Economy, the Hydrogen Economy. National Academies Press, Washington, D.C. https://doi.org/10.17226/ 10922.

The White House, 2021. Fact Sheet: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing U.S. Leadership on Clean Energy Technologies. Whitehouse.Gov 6.

Tlili, O., Mansilla, C., Frimat, D., Perez, Y., 2019. Hydrogen market penetration feasibility assessment: mobility and natural gas markets in the US, Europe, China and Japan. Int. J. Hydrogen Energy 44, 16048–16068. https://doi.org/10.1016/j. ijhydene.2019.04.226.

tractebel, 2017. Study on Early Business in Energy Storage and Cases for H2 More Broadly Power to H2 Applications. EU Comm, pp. 1–228.

Transportation, U.D. of, 2018. Fact sheet : transmission pipelines [WWW Document]. htt ps://primis.phmsa.dot.gov/comm/FactSheets/FSTransmissionPipelines.htm.

US Department of Energy, 2014. Alternative fuels data center [WWW Document]. Choice rev. Online. https://doi.org/10.5860/choice.51-3266.

U.S. Department of Energy (DOE), 2017. Fuel cell motor vehicle tax credit [WWW Document]. https://afdc.energy.gov/laws/350.

Wappelhorst, S., 2021. Update on government targets for phasing out new sales of internal combustion engine passenger cars. Int. Counc. Clean Transp. 1–12.

Whitmarsh, L., Xenias, D., Jones, C.R., 2019. Framing effects on public support for carbon capture and storage. Palgrave Commun. 5 https://doi.org/10.1057/s41599- 019-0217-x.

Winch, P., Stepnitz, R., 2011. Peak oil and health in low- and middle-income countries: impacts and potential responses. Am. J. Publ. Health 101, 1607–1614. https://doi. org/10.2105/AJPH.2011.300231.

Zhao, Y., McDonell, V., Samuelsen, S., 2019. Influence of hydrogen addition to pipeline natural gas on the combustion performance of a cooktop burner. Int. J. Hydrogen Energy 44, 12239–12253. https://doi.org/10.1016/j.ijhydene.2019.03.100.

参考文献をもっと見る