リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Atmospheric occurrence of particle-associated nitrotriphenylenes via gas-phase radical-initiated reactions observed in South Osaka, Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Atmospheric occurrence of particle-associated nitrotriphenylenes via gas-phase radical-initiated reactions observed in South Osaka, Japan

Kameda, Takayuki Bandow, Hiroshi 京都大学 DOI:10.5572/ajae.2020.102

2021.03.31

概要

Nitrotriphenylenes (NTPs), which include the highly mutagenic isomer 2-nitrotriphenylene (2-NTP), have been detected in airborne particles. From a public hygienic point of view, it is necessary to study the environmental occurrence of NTPs in detail. In this study, concentrations of five nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) including NTPs in airborne particles and of nitrogen oxides (NOx; NO+NO₂) and carbon monoxide (CO), at a location in South Osaka, Japan, were measured at 3 h intervals. It was found that the diurnal variations in the concentrations of 1-nitropyrene (1-NP), NOx, and CO were similar, being high early in the morning and late in the evening. This finding indicates that the occurrence of 1-NP is affected significantly by primary emissions, particularly by automotive emissions. The concentration change in 1-nitrotriphenylene was similar to that of 2-nitropyrene produced by an atmospheric OH radicalinitiated reaction. On the contrary, the variations in the concentrations of 2-nitrofluoranthene (2-NF) and 2-NTP were significantly different from those of the other nitro-PAHs, i.e., their concentrations increased during the nighttime, suggesting that neither 2-NF nor 2-NTP was emitted from the primary sources, but were formed via the NO₃ radicalinitiated nitration of the parent fluoranthene and triphenylene (TP) in the atmosphere. Based on the ambient concentration of 2-NTP and the reported rate constant for the reaction of TP with NO3 radicals, the yield of 2-NTP from the gas-phase NO₃ radical-initiated reaction of TP was estimated to be 23%.

この論文で使われている画像

参考文献

Albinet, A., Leoz-Garziandia, E., Budzinski, H., Villenave, E.

(2007) Polycyclic aromatic hydrocarbons (PAHs), nitrated

PAHs and oxygenated PAHs in ambient air of the Marseilles area (South France): Concentrations and sources.

Science of the Total Environment, 384(1-3), 280-292.

https://doi.org/10.1016/j.scitotenv.2007.04.028

Arey, J., Zielinska, B., Atkinson, R., Winer, A.M., Ramdahl, T.,

Pitts, Jr., J.N. (1986) The formation of nitro-PAH from the

gas-phase reactions of fluoranthene and pyrene with the

OH radical in the presence of NOx. Atmospheric Environment, 20(12), 2339-2345. https://doi.org/10.1016/

0004-6981(86)90064-8

Atkinson, R., Arey, J., Zielinska, B., Aschmann, S.M. (1990)

Kinetics and Nitro-Products of the Gas-Phase OH and

NO3 Radical-Initiated Reactions of Naphthalene-d8, Fluoranthene-d10, and Pyrene. International Journal of Che­mical

Kinetics, 22(9), 999-1014. https://doi.org/10.1002/

kin.550220910

Atkinson, R., Arey, J. (1994) Atmospheric chemistry of gasphase polycyclic aromatic hydrocarbons: formation of

atmospheric mutagens. Environmental Health Perspective,

www.asianjae.org

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Asian Journal of Atmospheric Environment, Vol. 15, No. 1, 2020102, 2021

102, 117-126. https://doi.org/10.1289/ehp.94102s4117

Bamford, H.A., Baker, J.E. (2003) Nitro-polycyclic aromatic

hydrocarbons and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmospheric Environment, 37(15), 2077-2091. https://doi.org/10.1016/

S1352-2310(03)00102-X

Di Filippo, P., Rioccardi, C., Pomata, D., Buiarelli, F. (2010)

Concentrations of PAHs, and nitro- and methyl-derivatives

associated with a size-segregated urban aerosol. Atm­

ospheric Environment, 44(23), 2742-2749. https://doi.

org/10.1016/j.atmosenv.2010.04.035

Durant, J.L., Busby, Jr., W.F., Lafleur, A.L., Penman, B.W.,

Crespi, C.L. (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Rese­

arch, 371(3-4), 123-157. https://doi.org/10.1016/S01

65-1218(96)90103-2

Feilberg, A., Poulsen, M.W.B., Nielsen, T., Skov, H. (2001)

Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark. Atmospheric Environment, 35(2), 353-366. https://doi.org/

10.1016/S1352-2310(00)00142-4

Finlayson-Pitts, B.J., Pitts, Jr., J.N. (2000) Chemistry of the

upper and lower atmosphere, Academic Press, San Diego,

CA.

Ishii, S., Hisamatsu, Y., Inazu, K., Aika, K. (2000) Ambient measurement of nitrotriphenylenes and possibility of nitrotriphenylene formation by atmospheric reaction. Environmental Science and Technology, 34(10), 1893-1899. https://

doi.org/10.1021/es990553d

Ishii, S., Hisamatsu, Y., Inazu, K., Aika, K. (2001) Environmental occurrence of nitrotriphenylene observed in airborne particulate matter. Chemosphere, 44(4), 681-690.

https://doi.org/10.1016/S0045-6535(00)00516-6

Kalisa, E., Nagato, E., Bizuru, E., Lee, K., Tang, N., Pointing,

S., Hayakawa, K., Archer, S., Lacap-Bugler, D. (2019) Pollution characteristics and risk assessment of ambient

PM2.5-bound PAHs and NPAHs in typical Japanese and

New Zealand cities and rural sites. Atmospheric Pollution

Research, 10(5), 1396-1403. https://doi.org/10.1016/

j.apr.2019.03.009

Kameda, T., Inazu, K., Hisamatsu, Y., Takenaka, N., Bandow,

H. (2004) Determination of atmospheric nitro-polycyclic

aromatic hydrocarbons and their precursors at a heavy traffic roadside and at a residential area in Osaka, Japan. Polycyclic Aromatic Compounds, 24(4-5), 657-666. https://

doi.org/10.1080/10406630490471708

Kameda, T., Inazu, K., Hisamatsu, Y., Takenaka, N., Bandow,

H. (2005) Determination of particle-associated nitro-PAH

using HPLC/chemiluminescence detection system. In

Bioluminescence & Chemiluminescence: progress and

perspectives (Tsuji, A. et al. Eds), World Scientific, Singapore, pp. 409-412.

Kameda, T., Inazu, K., Hisamatsu, Y., Takenaka, N., Bandow,

H. (2006) Isomer distribution of nitrotriphenylenes in airborne particles, diesel exhaust particles, and the products

of gas-phase radical-initiated nitration of triphenylene.

Atmospheric Environment, 40(40), 7742-7751. https://

www.asianjae.org

doi.org/10.1016/j.atmosenv.2006.08.020

Kameda, T., Inazu, K., Asano, K., Murota, M., Takenaka, N.,

Sadanaga, Y., Hisamatsu, Y., Bandow, H. (2013) Prediction

of rate constants for the gas phase reactions of triphenylene

with OH and NO3 radicals using a relative rate method in

CCl4 liquid phase-system. Chemosphere, 90(2), 766-771.

https://doi.org/10.1016/j.chemosphere.2012.09.071

Kameda, T., Azumi, E., Fukushima, A., Tang, N., Matsuki, A.,

Kamiya, Y., Toriba, A., Hayakawa, K. (2016) Mineral dust

aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Scientific Reports, 6, 24427. https://doi.

org/10.1038/srep24427

Kamiya, Y., Kameda, T., Ohura, T., Tohno, S. (2017) Determination of Particle-associated PAH Derivatives (ClPAHs,

NPAHs, OPAHs) in Ambient Air and Automobile Exhaust

by Gas Chromatography/Mass Spectrometry with Negative Chemical Ionization. Polycyclic Aromatic Compounds, 37(2-3), 128-140. https://doi.org/10.1080/104

06638.2016.1202290

Kawanaka, Y., Sakamoto, K., Wang, N., Yun, S. (2005) Determination of nitroarenes and 3-nitrobenzanthrone in atmospheric particulate matter by gas chromatography/tandem

mass spectrometry with negative ion chemical ionization.

Bunseki Kagaku, 54(8), 685-691, https://doi.org/10.2116/

bunsekikagaku.54.685

Kojima, Y., Inazu, K., Hisamatsu, Y., Okochi, H., Baba, T.,

Nagoya, T. (2010a) Comparison of PAHs, Nitro-PAHs and

Oxy-PAHs associated with airborne particulate matter at

roadside and urban background sites in downtown Tokyo,

Japan. Polycyclic Aromatic Compounds, 30(5), 321-333.

https://doi.org/10.1080/10406638.2010.525164

Kojima, Y., Inazu, K., Hisamatsu, Y., Okochi, H., Baba, T.,

Nagoya, T. (2010b) Influence of secondary formation on

atmospheric occurrences of oxygenated polycyclic aromatic hydrocarbons in airborne particles. Atmospheric Environment, 44(24), 2873-2880. https://doi.org/10.1016/

j.atmosenv.2010.04.048

Lammel, G., Klánová, J., Ilić, P., Kohoutek, J., Gasić, B., Kovacić,

I., Lakić, N., Radić, R. (2010a) Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - I. Levels

and variabilities. Atmospheric Environment, 44(38), 50155021. https://doi.org/10.1016/j.atmosenv.2010.07.034

Lammel, G., Klánová, J., Ilić, P., Kohoutek, J., Gasić, B., Kovacić,

I., Škrdlíková, L. (2010b) Polycyclic aromatic hydrocarbons

in air on small spatial and temporal scales - II. Mass size distributions and gas-particle partitioning. Atmospheric Environment, 44(38), 5022-5027. https://doi.org/10.1016/

j.atmosenv.2010.08.001

Ma, Y., Cheng, Y., Qiu, X., Lin, Y., Cao, J., Hu, D. (2016) A

quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. Environmental Pollution, 219, 742749, https://doi.org/10.1016/j.envpol.2016.07.034

Miet, K., Le Menach, K., Flaud, P.M., Budzinski, H., Villenave,

E. (2009) Heterogeneous reactivity of pyrene and 1-nitropyrene with NO2: Kinetics, product yields and mechanism.

Atmospheric Environment, 43(4), 837-843, https://doi.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Atmospheric Occurrence of Nitrotriphenylenes

org/10.1016/j.atmosenv.2008.10.041

Morikawa, T., Wakamatsu, S., Tanaka, M., Uno, I., Maeda, T.

(1997) Long term observation of C2-C5 hydrocarbons in

Osaka city. Journal of Japan Society for Atmospheric Environment, 32(3), 187-203. https://doi.org/10.11298/

taiki1995.32.3_187

Murahashi, T., Kizu, R., Kakimoto, H., Toriba, A., Hayakawa,

K. (1999) 2-Nitrofluoranthene, 1-, 2- and 4-nitropyrenes

and 6-nitrochrysene in diesel-engine exhaust and airborne

particulates. Journal of Health Sciences, 45(5), 244-250.

https://doi.org/10.1248/jhs.45.244

Nežiková, B., Degrendele, C., Bandowe, B.A.M., Šmejkalová,

A.H., Kukučka, P., Martiník, J., Mayer, L., Prokeš, R .,

Přibylová, P., Klánová, J., Lammel, G. (2020) Three years of

atmospheric concentrations of nitrated and oxygenated

polycyclic aromatic hydrocarbons and oxygen heterocycles

at a central European background site. Chemosphere, in

press. https://doi.org/10.1016/j.chemosphere.2020.

128738

Nguyen, M.L., Bedjanian, Y., Guilloteau, A. (2009) Kinetics of

the reactions of soot surface-bound polycyclic aromatic

hydrocarbons with NO2. Journal of Atmospheric Chemistry, 62, 139-150. https://doi.org/10.1007/s10874-0109144-3

Nielsen, T. (1984) Reactivity of polycyclic aromatic hydrocarbons toward nitrating species. Environmental Science and

Technology, 18(3), 157-163. https://doi.org/10.1021/

es00121a005

Phousongphouang, P.T., Arey, J. (2003) Sources of the atmospheric contaminants, 2-nitrobenzanthrone and 3-nitrobenzanthrone. Atmospheric Environment, 37(23), 31893199. https://doi.org/10.1016/S1352-2310(03)00344-3

Ringuet, J., Leoz-Garziandia, E., Budzinski, H., Villenave, E.,

Albinet, A. (2012) Particle size distribution of nitrated and

oxygenated polycyclic aromatic hydrocarbons (NPAHs

and OPAHs) on traffic and suburban sites of a European

megacity: Paris (France). Atmospheric Chemistry and

Physics, 12, 8877-8887. https://doi.org/10.5194/acp-128877-2012

Schuetzle, D. (1983) Sampling of vehicle emissions for chemical analysis and biological testing. Environmental Health

Perspective, 47, 65-80. https://doi.org/10.1289/ehp.

834765

Schuetzle, D., Riley, T.L., Prater, T.J., Harvey, T.M., Hunt, D.F.

(1982) Analysis of nitrated polycyclic aromatic hydrocarbons in diesel particulates. Analytical Chemistry, 54(2),

265-271. https://doi.org/10.1021/ac00239a028

Wilson, J., Octaviani, M., Bandowe, B.A.M., Wietzoreck, M.,

Zetzsch, C., Pöschl, U., Berkemeier, T., Lammel, G. (2020)

Modeling the Formation, Degradation, and Spatiotemporal Distribution of 2-Nitrofluoranthene and 2-Nitropyrene

in the Global Atmosphere. Environmental Science and

Technology, 54(22), 14224-14234. https://doi.org/10.

1021/acs.est.0c04319

Yang, Z., Jinian, S., Changgeng, L., Yuanxun, Z., Bo, Y., Jie, G.

(2013) Heterogeneous reaction of particle-associated triphenylene with NO3 radicals. Atmospheric Environment,

68, 114-119. https://doi.org/10.1016/j.atmosenv.2012.

11.052

Zielinska, B., Arey, J., Atkinson, R., Ramdahl, T., Winer, A.M.,

Pitts, Jr., J.N. (1986) Reaction of dinitrogen pentoxide with

fluoranthene. Journal of the American Chemical Society,

108(14), 4126-4132. https://doi.org/10.1021/ja0027

4a045

Zimmermann, K., Atkinson, R., Arey, J., Kojima, Y., Inazu, K.

(2012) Isomer distributions of molecular weight 247 and

273 nitro-PAHs in ambient samples, NIST diesel SRM,

and from radical-initiated chamber reactions. Atmospheric

Environment, 55, 431-439. https://doi.org/10.1016/

j.atmosenv.2012.03.016

www.asianjae.org

...

参考文献をもっと見る