リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Not baseline but time-dependent erythropoiesis-stimulating agent responsiveness predicts cardiovascular disease in hemodialysis patients receiving epoetin beta pegol: A multicenter prospective PARAMOUNT-HD Study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Not baseline but time-dependent erythropoiesis-stimulating agent responsiveness predicts cardiovascular disease in hemodialysis patients receiving epoetin beta pegol: A multicenter prospective PARAMOUNT-HD Study

Fujii, Hideki Hamano, Takayuki Tsuchiya, Ken Kuragano, Takahiro Joki, Nobuhiko Tsuruya, Kazuhiko Honda, Hirokazu Uemura, Yukari Nitta, Kosaku 神戸大学

2023.03.15

概要

Background: Responsiveness to erythropoiesis-stimulating agents (ESAs) has been reported to be associated with increased cardiovascular disease (CVD) and mortality in patients undergoing hemodialysis (HD). However, the association between hyporesponsiveness to the long-acting ESA, epoetin beta pegol (CERA), and CVD remains unknown. Methods: This multicenter prospective study included 4034 patients undergoing maintenance HD. After shifting from prior ESA to CERA, we studied the association between erythropoietin resistance index (ERI) at six months and outcomes, including cardiac events, major adverse cardiovascular events (MACE), and all-cause mortality, using Cox proportional hazards models (Landmark analyses) and marginal structural models to adjust for time-dependent confounding factors, including iron-containing medications and hemodiafiltration (HDF). Results: The median dialysis vintage and the observational period were 5.0 years and 22.1 months, respectively. The landmark analyses revealed that the highest tertile of baseline ERI (T3) was associated with a significantly higher all-cause mortality than the lowest tertile (T1) (hazard ratio [HR]: 1.48, 95% CI: 1.03–2.13). Furthermore, marginal structural models revealed that time-dependent ERI T3 was significantly associated with increased cardiac events (HR: 1.59, 95% CI: 1.14–2.23), MACE (HR: 1.60, 95% CI: 1.19–2.15), all-cause mortality (HR: 1.97, 95% CI: 1.40–2.77), and heart failure (HF) (HR: 2.05, 95% CI: 1.23–3.40) compared to T1. A linear mixed effects model showed that iron-containing medications and HDF are negatively associated with time-dependent ERI. Conclusions: Baseline ERI at six months predicted only all-cause mortality; however, time-dependent ERI was a predictor of cardiac events, all-cause mortality, MACE, and HF. The widespread use of iron-containing medications and HDF would ameliorate ESA hyporesponsiveness.

この論文で使われている画像

関連論文

参考文献

1. Ishigami J, Cowan LT, Demmer RT, Grams ME, Lutsey PL, Carrero JJ, Coresh

J, Matsushita K: Incident Hospitalization with Major Cardiovascular Diseases and

Subsequent Risk of ESKD: Implications for Cardiorenal Major Cardiovascular

Diseases and Subsequent Risk of ESKD: Implications for Cardiorenal Syndrome. J Am

Soc Nephrol 31: 405-414, 2020

2. Chonchol M, Nielson C: Hemoglobin levels and coronary artery disease. Am Heart J

155: 494-498, 2008

3. Go AS, Yang J, Ackerson LM, Lepper K, Robbins S, Massie BM, Shlipak MG:

Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization

in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes

and Resource Utilization (ANCHOR) Study. Circulation 113: 2713-2723, 2006

4. Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, Schwab SJ,

Goodkin DA: The effects of normal as compared with low hematocrit values in

patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J

Med 339: 584-590, 1998

5. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, Reddan D; CHOIR

Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N

Fujii H, et al. page 25

Engl J Med 355: 2085-2998, 2006

6. Drüeke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, Burger

HU, Scherhag A, CREATE Investigators: Normalization of hemoglobin level in

patients with chronic kidney disease and anemia. N Engl J Med 355: 2071-2084,

2006

7. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, De Zeeuw D, Eckardt KU, Feyzi

JM, Ivanovich

P, Kewalramani

R, Levey

AS, Lewis

EF, McGill

JB, McMurray

JJV, Parfrey P, Parving HH, Remuzzi G, Singh AK, Solomon SD, Toto R, TREAT

Investigators: A trial of darbepoetin alfa in type 2 diabetes and chronic kidney

disease. N Engl J Med 361: 2019-2032, 2009

8. Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, Patel UD, Singh AK:

Secondary analysis of the CHOIR trial epoetin‒alpha dose and achieved hemoglobin

outcomes. Kidney Int 74: 791-798, 2008

9. Tanaka T, Nangaku M, Imai E, Tsubakihara Y, Kamai M, Wada M, Asada S, Akizawa

T: Safety and effectiveness of long-term use of darbepoetin alfa in non-dialysis

patients with chronic kidney disease: a post-marketing surveillance study in Japan.

Clin Exp Nephrol 23: 231-243, 2019

10. Solomon SD, Uno H, Lewis EF, Eckardt KU, Lin J, Burdmann EA, De Zeeuw

Fujii H, et al. page 26

D, Ivanovich P, Levey AS, Parfrey P, Remuzzi G, Singh AK, Toto R, Huang F, Rossert

J, McMurray JJV, Pfeffer MA, Trial to Reduce Cardiovascular Events with Aranesp

Therapy (TREAT) Investigators: Erythropoietic response and outcomes in kidney

disease and type 2 diabetes. N Engl J Med 363: 1146-1155, 2010

11. Fukuma S, Yamaguchi T, Hashimoto S, Nakai S, Iseki K, Tsubakihara Y, Fukuhara S:

Erythropoiesis-Stimulating Agent Responsiveness and Mortality in Hemodialysis

Patients: Results from a Cohort Study From the Dialysis Registry in Japan. Am J

Kidney Dis 59: 108-116, 2012

12. Goodkin DA, Zhao J, Cases A, Nangaku M, Karaboyas A: Resistance to ErythropiesisStimulating Agents among Patients on Hemodialysis Is Typically Transient. Am J

Nephrol 53: 333-342, 2022.

13. Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, Schwab

SJ, Goodkin DA: The effects of normal as compared with low hematocrit values in

patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J

Med 339: 584-90, 1998

14. Ishigami J, Onishi T, Shikuma S, Akita W, Mori Y, Asai T, Kuwahara M, Sasaki

S, Tsukamoto Y: The impact of hyporesponsiveness to erythropoietin-stimulating

agents on time-dependent mortality risk among CKD stage 5D patients: a single-

Fujii H, et al. page 27

center cohort study. Clin Exp Nephrol 17: 106-114, 2013

15. Johnson DW, Pollock CA, Macdougall IC: Erythropoiesis-stimulating agent

hyporesponsiveness. Nephrology (Carlton) 12: 321-330, 2007

16. Weir MR: Managing Anemia across the Stages of Kidney Disease in Those

Hyporesponsive to Erythropoiesis-Stimulating Agents. Am J Nephrol 52: 450-466,

2021

17. Panichi V, Scatena A, Rosati A, Giusti R, Ferro G, Malagnino E, Capitanini A, Piluso

A, Conti P, Bernabini G, Migliori M, Caiani D, Tetta C, Casani A, Betti G, Pizzarelli F:

High-volume online haemodiafiltration improves erythropoiesis-stimulating agent

(ESA) resistance in comparison with low-flux bicarbonate dialysis: results of the

REDERT study. Nephrol Dial Transplant 30: 682-689, 2015

18. Pedrini LA, Comelli M, Ruggiero P, Feliciani A, Manfrini V, Cozzi G, Castellano

A, Pezzotta M, Gatti G, Arazzi M, Auriemma L, Di Benedetto A, Stuard S: Mixed

hemodiafiltration reduces erythropoiesis stimulating agents requirement in dialysis

patients: a prospective randomized study. J Nephrol 33: 1037-1048, 2020

19. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work group: KDIGO

Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl

279–335, 2012

Fujii H, et al. page 28

20. Yamamoto H, Nishi S, Tomo T, Masakane I, Saito K, Nangaku M, Hattori M, Suzuki

T, Morita S, Ashida A, Ito Y, Kuragano T, Komatsu Y, Sakai K, Tsubakihara Y, Tsuruya

K, Hayashi T, Hirakata H, Honda H: 2015 Japanese Society for Dialysis Therapy:

Guidelines for Renal Anemia in Chronic Kidney Disease. Renal Replacement Therapy

3: 36, 2017

21. Silverberg D, Wexler D, Blum M, Wollman Y, Iaina A: The cardio-renal anaemia

syndrome: does it exist? Nephrol Dial Transplant 18 Suppl 8: viii7-viii12, 2003

22. Okonko DO, Marley SB, Anker SD, Poole-Wilson PA, Gordon MY: Erythropoietin

resistance contributes to anaemia in chronic heart failure and relates to aberrant

JAK-STAT signal transduction. Int J Cardiol 164: 359-364, 2013

23. Rocha BML, Cunha GJL, Menezes Falcão LF: The Burden of Iron Deficiency in Heart

Failure: Therapeutic Approach. J Am Coll Cardiol 71: 782-793, 2018

24. Ananda IS, Gupta P: Anemia and Iron Deficiency in Heart Failure: Current Concepts

and Emerging Therapies. Circulation 138: 80-98, 2018

25. Hoes MF, Beverborg NG, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans

BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P: Iron deficiency

impairs contractility of human cardiomyocytes through decreased mitochondrial

function. Eur J Heart Fail 20: 910-919, 2018

Fujii H, et al. page 29

26. Tang X, Fang M, Cheng R, Zhang Z, Wang Y, Shen C, Han Y, Lu Q, Du Y, Liu Y, Sun

Z, Zhu L, Mwangi J, Xue M, Long C, Lai R: Iron-Deficiency and Estrogen Are

Associated With Ischemic Stroke by Up-Regulating Transferrin to Induce

Hypercoagulability. Circ Res 127: 651-663, 2020

27. Tsuruya K, Hayashi T, Yamamoto H, Hase H, Nishi S, Yamagata K, Nangaku M, Wada

T, Uemura Y, Ohashi Y, Hirakata H, RADIANCE-CKD Study Investigators: Renal

prognoses by different target hemoglobin levels achieved by epoetin beta pegol

dosing to chronic kidney disease patients with hyporesponsive anemia to

erythropoiesis-stimulating agent: a multicenter open-label randomized controlled

study. Clin Exp Nephrol 25:456-466, 2021

28. Locatelli F, Hannedouche T, Fishbane S, Morgan Z, Oguey D, White WB:

Cardiovascular Safety and All-Cause Mortality of Methoxy Polyethylene GlycolEpoetin Beta and Other Erythropoiesis-Stimulating Agents in Anemia of CKD: A

Randomized Noninferiority Trial. Clin J Am Soc Nephrol 14:1701-1710, 2019

29. Sakaguchi Y, Hamano T, Wada A, Masakane I: Types of Erythropoietin-Stimulating

Agents and Mortality among Patients Undergoing Hemodialysis. J Am Soc Nephrol

30:1037-1048, 2019

30. Saglimbene VM, Palmer SC, Ruospo M, Natale P, Craig JC, Strippoli GF: Continuous

Fujii H, et al. page 30

erythropoiesis receptor activator (CERA) for the anaemia of chronic kidney disease.

Cochrane Database Syst Rev 8: CD009904, 2017

Fujii H, et al. page 31

Figure Legends

Figure 1.

Enrollment flow of study patients

*Ineligible due to exclusion criteria, such as non-adherence to treatment or withdrawal

of consent.

#excluded

Figure 2.

due to CVD events, death, or missing data.

Rates of each outcome among study patients according to their baseline ER

A. Cardiac events.

B. All-cause mortality.

C. MACE.

D. HF events.

ERI, erythropoietin resistance index; MACE, major adverse cardiovascular events; HF,

heart failure.

Figure 3.

Relationship between time-dependent ERI and each outcome

Fujii H, et al. page 32

ERI, erythropoietin resistance index; MACE, major adverse cardiovascular events

The colors of the bars represent the same ERI group for each outcome (low ERI group,

gray bar; middle ERI group, orange bar; and high ERI group, light blue bar).

Figure 4.

ERI changes during the study period

ERI, erythropoietin resistance index.

Fujii H, et al. page 33

Supplemental figures

Supplemental Figure 1 (Figure S1).

Changes in the prescription of iron-containing

medications during the study period

Supplemental Figure 2 (Figure S2).

Changes in TSAT during the study period

TSAT, transferrin saturation.

Supplemental Figure 3 (Figure S3).

Changes in the percentage of patients on on-line

HDF during the study period

HD, hemodialysis; HF, hemofiltration; HDF, hemodiafiltration.

Figure 1

Click here to access/download;Figure;PARAMOUNT HD (Figure 1) R1.pptx

Exclusion#

41 patients

Marginal Structural Model

Analysis Set

3,993 patients

Exclusion#

723 patients

Landmark Analysis Set

3,311 patients

Figure 2A

Click here to access/download;Figure;renamed_879f4.pptx

A Cardiac events

(%) 100

Survival Probability

99

98

97

96

95

94

93

92

91

90

ERI low

ERI medium

ERI high

Log-rank trend test p value 0.20

Log-rank test p value 0.44

Figure 2B

Click here to access/download;Figure;renamed_bb7b0.pptx

B All-cause mortality

(%) 100

Survival Probability

99

98

97

96

95

94

93

92

91

90

ERI low

ERI medium

ERI high

Log-rank trend test p value <.0001

Log-rank test p value <.0001

Figure 2C

Click here to access/download;Figure;renamed_c50c2.pptx

C MACE

(%) 100

Log-rank trend test p value 0.0049

Log-rank test p value 0.012

Survival Probability

99

98

97

96

95

94

93

92

91

90

ERI low

ERI medium

ERI high

Figure 2D

Click here to access/download;Figure;renamed_535e9.pptx

D Heart failure

(%) 100

Survival Probability

99

98

97

96

95

94

93

92

91

90

ERI low

ERI medium

ERI high

Log-rank trend test p value 0.169

Log-rank test p value 0.374

Figure 3

Click here to access/download;Figure;renamed_b598c.pptx

4.5

* P < 0.05

T1

T2

T3

95% Confidence Interval

Hazard Ratio for T1

3.5

2.5

1.5

0.5

Cardiac Disease Events

Total N=3,993

N=298

Mortality

N=371

MACE

N=435

Heart Failure Events

N=134

Figure 4

Click here to access/download;Figure;renamed_5d755.pptx

0.15

Low

Medium

High

(T1)

(T2)

(T3)

0.10

0.05

0.00

0 1

2 3 4

5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(month)

Table 1(Editable version)

Click here to access/download;Table(Editable version);PARAMOUNT HD (Table 1).docx

Table 1. Baseline characteristics of patients

All

(n = 3,312)

Low ERI

(n = 1,104)

Medium ERI

(n = 1,104)

High ERI

(n = 1,104)

p-value

Age (year)

65.5 ± 11.9

63.3 ± 12.1

65.7 ± 11.8

67.6 ± 11.5

<.0001

Sex (male) (%)

2,110 (63.7)

763 (69.1)

700 (63.4)

647 (58.6)

<.0001

22.0 ± 3.7

22.8 ± 3.8

22.0 ± 3.7

21.2 ± 3.4

<.0001

Systolic BP (mmHg)

150.3 ± 21.7

150.2 ± 22.2

150.5 ± 21.5

150.2 ± 21.4

0.943

Diastolic BP (mmHg)

78.1 ± 13.6

79.7 ± 13.5

77.6 ± 13.5

77.1 ± 13.6

<.0001

Pulse pressure (mmHg)

72.2 ± 17.0

70.5 ± 17.1

72.9 ± 16.9

73.1 ± 16.8

<.001

HT (%)

2,656 (80.2)

871 (78.9)

886 (80.3)

889 (81.4)

0.592

DM (%)

1,373 (41.5)

466 (42.2)

465 (42.1)

442 (40.0)

0.503

CVD (%)

1,725 (52.1)

543 (49.2)

572 (51.8)

610 (55.3)

0.017

RAS-I (%)

1,716 (51.8)

512 (46.4)

597 (54.1)

607 (55.0)

<.0001

β-blocker (%)

287 (8.7)

105 (9.5)

89 (8.1)

93 (8.4)

0.452

Statin (%)

654 (19.7)

245 (22.2)

225 (20.4)

184 (16.7)

0.004

Antiplatelet (%)

1,440 (43.5)

484 (43.8)

448 (40.6)

508 (46.0)

0.035

Vitamin D (%)

1,591 (48.0)

550 (49.8)

519 (47.0)

522 (47.3)

0.350

Phosphate binder (%)

2735 (82.6)

950 (86.1)

896 (81.2)

889 (80.5)

<.001

BMI (kg/m2)

Calcium containing (%)

1,972 (59.5)

672 (60.9)

658 (59.6)

642 (58.2)

0.429

167 (5.0)

74 (6.7)

60 (5.4)

33 (3.0)

<.001

1,789 (54.0)

639 (57.9)

579 (52.4)

571 (51.7)

0.006

816 (24.6)

283 (25.6)

268 (24.3)

265 (24.0)

0.640

HD vintage (years)

7.9 ± 7.4

7.7 ± 7.3

7.7 ± 7.1

8.4 ± 7.7

0.037

HD time (hours)

11.5 ± 2.5

11.7 ± 2.4

11.6 ± 2.4

11.2 ± 2.7

<.0001

Online HDF (%)

450 (13.6)

170 (15.4)

143 (13.0)

137 (12.4)

0.215

3,041 (91.8)

1,022 (92.6)

1,030 (93.3)

989 (89.6)

0.032

Graft (%)

215 (6.5)

64 (5.8)

62 (5.6)

89 (8.1)

Catheter (%)

12 (0.4)

5 (0.5)

1 (0.1)

6 (0.5)

Others (%)

44 (1.3)

13 (1.2)

11 (1.0)

20 (1.8)

Kt/V

1.5 ± 0.3

1.5 ± 0.3

1.5 ± 0.3

1.5 ± 0.4

0.168

Hemoglobin (g/dL)

10.7 ± 1.0

10.9 ± 0.9

10.7 ± 1.0

10.4 ± 1.0

<.0001

Alb (g/dL)

3.7 ± 0.4

3.7 ± 0.4

3.7 ± 0.4

3.6 ± 0.4

<.0001

CRP (mg/dL)

0.4 ± 1.0

0.3 ± 0.9

0.3 ± 0.8

0.5 ± 1.1

<.0001

154.2 ± 34.1

157.4 ± 32.9

153.9 ± 33.9

151.4 ± 35.1

<.001

9.1 ± 0.8

9.1 ± 0.7

9.1 ± 0.7

9.1 ± 0.9

0.649

Iron containing (%)

Others (%)

Iron agents (%)

Type of blood access

A-V fistula (%)

T-Chol (mg/dL)

cCa (mg/dL)

P (mg/dL)

iPTH (pg/mL)

Fe (µg/dL)

Ferritin (ng/mL)

TSAT (%)

5.3 ± 1.3

5.4 ± 1.3

5.3 ± 1.4

5.2 ± 1.3

0.010

167.3 ± 146.1

170.0 ± 129.0

165.6 ± 146.8

166.3 ± 161.1

0.794

60.6 ± 26.6

62.0 ± 25.2

63.0 ± 27.2

57.2 ± 27.0

<.0001

111.1 ± 228.5

103.3 ± 130.2

121.8 ± 325.7

108.0 ± 181.2

0.149

24.9 ± 11.6

24.8 ± 10.9

25.5 ± 11.9

24.2 ± 12.1

0.046

BMI, body mass index; BP, blood pressure; HT, hypertension; DM, diabetes mellitus; CVD, cardiovascular disease; RAS-I, reninangiotensin-aldosterone inhibitor; HD, hemodialysis; HDF, hemodialysis filtration; A-V fistula, arteriovenous fistula; Alb, albumin; CRP,

C-reactive protein; T-Chol, total cholesterol; cCa, corrected calcium; P, phosphate; iPTH, intact parathyroid hormone; Fe, iron; TSAT,

transferrin saturation.

Values are presented as mean ± standard deviation.

Table 2(Editable version)

Click here to access/download;Table(Editable version);PARAMOUNT HD (Table 2).docx

Table 2. Cox regression analysis

Reference

Cardiac events

All-cause mortality

MACE

Heart failure

Tertile of ERI

HR

95% CI

p-value

Medium

1.04

0.71-1.53

0.82

High

1.06

0.72-1.58

0.76

Medium

1.36

0.94-1.97

0.10

High

1.48

1.03-2.13

0.03

Medium

1.37

0.99-1.90

0.05

High

1.31

0.94-1.84

0.11

Medium

1.02

0.56-1.86

0.94

High

1.12

0.62-2.04

0.71

Low

Low

Low

Low

MACE, major adverse cardiovascular events; ERI, erythropoietin resistance index; HR, hazard ratio; CI, confidence interval.

Table 3(Editable version)

Click here to access/download;Table(Editable version);PARAMOUNT HD (Table 3).docx

Table 3. The positive effect of iron containing medications and online HDF on ESA sensitivity

Estimate value

Standard error

Iron containing medications

-0.00198

0.000537

0.0002

Online HDF

-0.00188

0.000738

0.0158

HDF, hemodiafiltration.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る