リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Association Between Serum 3-Hydroxyisobutyric Acid and Prognosis in Patients With Chronic Heart Failure : An Analysis of the KUNIUMI Registry Chronic Cohort」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Association Between Serum 3-Hydroxyisobutyric Acid and Prognosis in Patients With Chronic Heart Failure : An Analysis of the KUNIUMI Registry Chronic Cohort

Fujimoto, Wataru Nagao, Manabu Nishimori, Makoto Shinohara, Masakazu Takemoto, Makoto Kuroda, Koji Yamashita, Soichiro Imanishi, Junichi Iwasaki, Masamichi Todoroki, Takafumi Okuda, Masanori Tanaka, Hidekazu Ishida, Tatsuro Toh, Ryuji Hirata, Ken-ichi 神戸大学

2023.12.25

概要

Background: Diabetes increases the risk of heart failure (HF). 3-Hydroxyisobutyric acid (3-HIB) is a muscle-derived metabolite reflecting systemic insulin resistance. In this study, we investigated the prognostic impact of 3-HIB in patients with chronic HF. Methods and Results: The KUNIUMI Registry chronic cohort is a community-based cohort study of chronic HF in Awaji Island, Japan. We analyzed the association between serum 3-HIB concentrations and adverse cardiovascular (CV) events in 784 patients from this cohort. Serum 3-HIB concentrations were significantly higher in patients with than without diabetes (P=0.0229) and were positively correlated with several metabolic parameters. According to Kaplan-Meier analysis, rates of CV death and HF hospitalization at 2 years were significantly higher among HF patients without diabetes in the high 3-HIB group (3-HIB concentrations above the median; i.e., >11.30 μmol/L) than in the low 3-HIB group (log-rank P=0.0151 and P=0.0344, respectively). Multivariable Cox proportional hazard models adjusted for established risk factors for HF revealed high 3-HIB as an independent predictor of CV death (hazard ratio [HR] 1.82; 95% confidence interval [CI] 1.16–2.85; P=0.009) and HF hospitalization (HR 1.72; 95% CI 1.17–2.53, P=0.006) in HF patients without diabetes, whereas no such trend was seen in subjects with diabetes. Conclusions: In a community cohort, circulating 3-HIB concentrations were associated with prognosis in chronic HF patients without diabetes.

関連論文

参考文献

1. MacDonald MR, Tay WT, Teng TK, Anand I, Ling LH, Yap J,

et al. Regional variation of mortality in heart failure with

reduced and preserved ejection fraction across Asia: Outcomes

in the ASIAN-HF registry. J Am Heart Assoc 2020; 9: e012199.

2. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach

A, Bohm M, et al. 2021 ESC guidelines for the diagnosis and

treatment of acute and chronic heart failure: Developed by the

Task Force for the diagnosis and treatment of acute and chronic

heart failure of the European Society of Cardiology (ESC) with

the special contribution of the Heart Failure Association (HFA)

of the ESC. Rev Esp Cardiol (Engl Ed) 2022; 75: 523.

3. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt

MS, Callaway CW, et al. Heart disease and stroke statistics –

2021 update: A report from the American Heart Association.

Circulation 2021; 143: e254 – e743.

4. Fujimoto W, Toh R, Takegami M, Hayashi T, Kuroda K, Hatani

Y, et al. Estimating incidence of acute heart failure syndromes in

Japan: An analysis from the KUNIUMI Registry. Circ J 2021;

85: 1860 – 1868.

5. GBD 2015 Disease and Injury Incidence and Prevalence

Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries,

1990 – 2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545 – 1602.

6. Kannel WB, McGee DL. Diabetes and cardiovascular disease:

The Framingham study. JAMA 1979; 241: 2035 – 2038.

7. Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart

failure in type 2 diabetes: Prevalence, incidence, and risk factors.

Diabetes Care 2001; 24: 1614 – 1619.

8. Pazin-Filho A, Kottgen A, Bertoni AG, Russell SD, Selvin E,

Rosamond WD, et al. HbA1c as a risk factor for heart failure in

persons with diabetes: The Atherosclerosis Risk in Communities

(ARIC) study. Diabetologia 2008; 51: 2197 – 2204.

9. Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai

AS, et al. Type 2 diabetes mellitus and heart failure: A scientific

statement from the American Heart Association and the Heart

Failure Society of America: This statement does not represent an

update of the 2017 ACC/AHA/HFSA heart failure guideline

update. Circulation 2019; 140: e294 – e324.

10. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ,

Cooksey RC, et al. Impaired cardiac efficiency and increased

fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 2004; 53: 2366 – 2374.

11. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen

TS. Increased myocardial oxygen consumption reduces cardiac

efficiency in diabetic mice. Diabetes 2006; 55: 466 – 473.

12. Karwi QG, Ho KL, Pherwani S, Ketema EB, Sun Q, Lopaschuk

GD. Concurrent diabetes and heart failure: Interplay and novel

therapeutic approaches. Cardiovasc Res 2022; 118: 686 – 715.

13. Avogaro A, Bier DM. Contribution of 3-hydroxyisobutyrate to

the measurement of 3-hydroxybutyrate in human plasma: Comparison of enzymatic and gas-liquid chromatography-mass spectrometry assays in normal and in diabetic subjects. J Lipid Res

1989; 30: 1811 – 1817.

14. Mardinoglu A, Gogg S, Lotta LA, Stancakova A, Nerstedt A,

Boren J, et al. Elevated plasma levels of 3-hydroxyisobutyric acid

are associated with incident type 2 diabetes. EBioMedicine 2018;

27: 151 – 155.

15. Nilsen MS, Jersin RA, Ulvik A, Madsen A, McCann A, Svensson

PA, et al. 3-Hydroxyisobutyrate, a strong marker of insulin

resistance in type 2 diabetes and obesity that modulates white

and brown adipocyte metabolism. Diabetes 2020; 69: 1903 – 1916.

16. Asanuma H, Kitakaze M. The largest cohort study opens a new

era for the management of heart failure in Japan. Circ J 2011; 75:

775 – 776.

17. Irino Y, Toh R, Nagao M, Mori T, Honjo T, Shinohara M, et

al. 2-Aminobutyric acid modulates glutathione homeostasis in

the myocardium. Sci Rep 2016; 6: 36749.

18. Lamb HJ, Beyerbacht HP, van der Laarse A, Stoel BC, Doornbos

J, van der Wall EE, et al. Diastolic dysfunction in hypertensive

heart disease is associated with altered myocardial metabolism.

Circulation 1999; 99: 2261 – 2267.

19. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS.

Decreased energy reserve in an animal model of dilated cardiomyopathy: Relationship to contractile performance. Circ Res

1996; 78: 893 – 902.

20. Neubauer S, Horn M, Pabst T, Godde M, Lubke D, Jilling B, et

al. Contributions of 31P-magnetic resonance spectroscopy to the

understanding of dilated heart muscle disease. Eur Heart J 1995;

16(Suppl O): 115 – 118.

21. Lommi J, Kupari M, Koskinen P, Naveri H, Leinonen H, Pulkki

K, et al. Blood ketone bodies in congestive heart failure. J Am

Coll Cardiol 1996; 28: 665 – 672.

22. Sun H, Olson KC, Gao C, Prosdocimo DA, Zhou M, Wang Z,

et al. Catabolic defect of branched-chain amino acids promotes

heart failure. Circulation 2016; 133: 2038 – 2049.

23. Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M,

Testani JM, et al. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol 2016; 67: 291 – 299.

24. Truby LK, Regan JA, Giamberardino SN, Ilkayeva O, Bain J,

Newgard CB, et al. Circulating long chain acylcarnitines and

outcomes in diabetic heart failure: An HF-ACTION clinical trial

substudy. Cardiovasc Diabetol 2021; 20: 161.

25. Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L. Insulin

resistance and risk of congestive heart failure. JAMA 2005; 294:

334 – 341.

26. Vardeny O, Gupta DK, Claggett B, Burke S, Shah A, Loehr L,

et al. Insulin resistance and incident heart failure the ARIC study

(Atherosclerosis Risk in Communities). JACC Heart Fail 2013;

1: 531 – 536.

27. Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von

Haehling S, Okonko DO, et al. Impaired insulin sensitivity as an

independent risk factor for mortality in patients with stable

chronic heart failure. J Am Coll Cardiol 2005; 46: 1019 – 1026.

28. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien

LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to

insulin resistance. Cell Metab 2009; 9: 311 – 326.

29. Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher

RJ, et al. Quantitative analysis of the whole-body metabolic fate

of branched-chain amino acids. Cell Metab 2019; 29: 417 – 429.

e4.

30. Tobias DK, Lawler PR, Harada PH, Demler OV, Ridker PM,

Manson JE, et al. Circulating branched-chain amino acids and

incident cardiovascular disease in a prospective cohort of US

women. Circ Genom Precis Med 2018; 11: e002157.

31. Jang C, Oh SF, Wada S, Rowe GC, Liu L, Chan MC, et al. A

branched-chain amino acid metabolite drives vascular fatty acid

transport and causes insulin resistance. Nat Med 2016; 22:

421 – 426.

32. Kedishvili NY, Popov KM, Jaskiewicz JA, Harris RA. Coordinated expression of valine catabolic enzymes during adipogenesis: Analysis of activity, mRNA, protein levels, and metabolic

consequences. Arch Biochem Biophys 1994; 315: 317 – 322.

Supplementary Files

Please find supplementary file(s);

https://doi.org/10.1253/circj.CJ-23-0577

Circulation Journal Vol.88, January 2024

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る