リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Chemical identification of an active component and putative neural mechanism for repellent effect of a native ant's odor on invasive species」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Chemical identification of an active component and putative neural mechanism for repellent effect of a native ant's odor on invasive species

Uebi, Tatsuya Sakita, Tomoya Ikeda, Ryo Sakanishi, Keita Tsutsumi, Tomoaki Zhang, Zijian Ma, Huiying Matsubara, Ryosuke Matsuyama, Shigeru Nakajima, Satoko Huang, Rong-Nan Habe, Shunya Hefetz, Abraham Ozaki, Mamiko 神戸大学

2022.08.30

概要

The invasive Argentine ants (Linepithema humile) and the red imported fire ants (Solenopsis invicta) constitute a worldwide threat, causing severe disruption to ecological systems and harming human welfare. In view of the limited success of current pest control measures, we propose here to employ repellents as means to mitigate the effect of these species. We demonstrate that cuticular hydrocarbons (CHCs) used as nestmate-recognition pheromone in the Japanese carpenter ant (Camponotus japonicus), and particularly its (Z)-9-tricosene component, induced vigorous olfactory response and intense aversion in these invasive species. (Z)-9-Tricosene, when given to their antennae, caused indiscriminate glomerular activation of antennal lobe (AL) regions, creating neural disarray and leading to aversive behavior. Considering the putative massive central neural effect, we suggest that the appropriate use of certain CHCs of native ants can facilitate aversive withdrawal of invasive ants.

この論文で使われている画像

参考文献

Belloa, J. E., McElfresh, J. S., and Millar, J. G. (2015). Isolation and determination of absolute configurations of insect-produced methyl- branched hydrocarbons. Proc. Natl. Acad. Sci. U. S. A. 112, 1077–1082. doi:10.1073/pnas.1417605112

Blomquist, G. J. (2010). “Biosynthesis of cuticular hydrocarbons,” in Insect hydrocarbons: 15 biology, biochemistry, and chemical ecology. Editors G. J. Blomquist and A. G. Bagnères (Cambridge: Cambridge University Press), 35–52.

Blum, M. S. (1966). Chemical releasers of social behavior: VIII. Citral in the mandibular gland secretion of Lestrimellita limao (Hymenoptera: Apoidea:Melittidae). Ann. Entomol. Soc. Am. 59, 962–964. doi:10.1093/ aesa/59.5.962

Bonavita-Cougourdan, A., Clément, J. L., and Lange, C. (1987). Nestmate recognition: the role of cuticular hydrocarbons in the ant Camponotus vagus Scop. J. Entomol. Sci. 22, 1–10. doi:10.18474/0749-8004-22.1.1

Brandstaetter, A. S., Rössler, W., and Kleineidam, C. J. (2011). Friends and foes an ant brain’s point of view-neuronal correlates of colony odors in a social insect. PLoS One 6, e21383. doi:10.1371/journal.pone.0021383

Briffa, M. (2010). Territoriality and aggression. Nat. Educ. Knowl. 3, 81.

Duffield, R. M., Blum, M. S., and Wheeler, J. W. (1976). Alkylpyrazine alarm pheromones in primitive ants with small colonial units. Comp. Biochem. Physiol. B 54, 439–440. doi:10.1016/0305-0491(76)90116-4

Evans, D. A., Ennis, M. D., and Mathre, D. J. (1982). Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives. J. Am. Chem. Soc. 104, 1737–1739. doi:10.1021/ja00370a050

Gao, Y., and Reitz, S. R. (2017). Emerging themes in our understanding of species displacements. Annu. Rev. Entomol. 62, 165–183. doi:10.1146/annurev-ento- 031616-035425

Giraud, T., Pedersen, J. S., and Keller, L. (2002). Evolution of supercolonies: the Argentine ants of southern europe. Proc. Natl. Acad. Sci. U. S. A. 99, 6075–6079. doi:10.1073/pnas.092694199

Guénard, B., Weiser, M., Gomez, K., Narula, N., and Economo, E. P. (2017). The global ant biodiversity informatics (GABI) database: a synthesis of ant species geographic distributions. Myrmecol. News 24, 83–89. doi:10.25849/myrmecol.news_024:083

Hojo, M. K., Ishii, K., Sakura, M., Yamaguchi, K., Shigenobu, S., and Ozaki, M. (2015). Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci. Rep. 5, 13541. doi:10.1038/srep13541

Human, K. G., and Gordon, D. M. (1996). Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia (Berl.) 105, 405–412. doi:10.1007/BF00328744

Inoue, M., Saito-Morooka, F., Suzuki, K., Nomura, T., ayasaka, D., Kishimoto, T., et al. (2015). Ecological impacts on native ant and ground-dwelling animal communities through Argentine ant (Linepithema humile) (Hymenoptera: Formicidae) management in Japan. Appl. Entomol. Zool. 50, 331–339. doi:10. 1007/s13355-015-0338-7

Janicki, J., Narula, N., Ziegler, M., Guénard, B. E., and Economo, P. (2016). Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: the design and implementation of antmaps.org. Ecol. Inf. 32, 185–193. doi:10.1016/j.ecoinf.2016.02.006

Lowe, S., Browne, M., Boudjelas, S., and De Poorter, M. (2000). 100 of the world’s worst invasive alien species. Auckland, New Zealand: ISSG, University of Auckland.

Maeda, T., Nisimura, T., Habe, S., Uebi, T., and Ozaki, M. (2020). Visualization of antennal lobe glomeruli activated by non-appetitive D-limonene and appetitive 1- octen-3-ol odors via two kinds of olfactory organs in the blowfly, Phormia regina. Zool. Let. 6 (1), 16. doi:10.1186/s40851-020-00167-3

Mizutani, H., Tagai, K., Habe, S., Takaku, Y., Uebi, T., Kimura, T., et al. (2021). Antenna cleaning is essential for precise behavioral response to alarm pheromone and nestmate–non-nestmate discrimination in Japanese carpenter ants (Camponotus japonicus). Insects 12 (9), 773. doi:10.3390/insects12090773

Mothapo, N. P., and Wossler, T. C. (2011). Behavioural and chemical evidence for multiple colonisation of the Argentine ant, Linepithema humile, in the Western Cape, South Africa. BMC Ecol. 11, 6. doi:10.1186/1472-6785-11-6

Nakanishi, A., Nishino, H., Watanabe, H., Yokohari, F., and Nishikawa, M. (2010). Sex-specific antennal sensory system in the ant. Camponotus japonicus: glomerular organizations of antennal lobes. J. Comp. Neurol. 518, 2186–2201. doi:10.1002/cne.22326

Nick, B., and d’Ettorre, P. (2012). Recognition of social identity in ants. Front. Psychol. 3, 83. doi:10.3389/fpsyg.2012.00083

Nishikawa, M., Watanabe, H., and Yokohari, F. (2012). Higher brain centers for social tasks in worker ants, Camponotus japonicus. J. Comp. Neurol. 1, 1584–1598. doi:10.1002/cne.23001

Ozaki, M., and Hefetz, A. (2014). Neural Mechanisms and Information processing in recognition systems. Insects 5, 722–741. doi:10.3390/insects5040722

Ozaki, M., Wada-Katsumata, A., Fujikawa, K., Iwasaki, M., Yokohari, F., Satoji, Y., et al. (2005). Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309, 311–314. doi:10.1126/science.1105244

Ozaki, M., Wada-Katsumata, A., and Hiragucghi, T. (2012). “Cuticular hydrocarbon sensillum for nestmate recognition in ants,” in Frontiers in sensing: from biology to engineering. Editors F. G. Barth, J. A. C. Humphrey, and M. V. Srinivasan (New York: Springer), 145–155.

Powell, B. E., Brightwell, R. J., and Silverman, J. (2009). Effect of an invasive and native ant on a field population of the black citrus aphid (Hemiptera: Aphididae). Environ. Entomol. 38, 1618–1625. doi:10.1603/022.038.0614

Pyšek, P., Blackburn, T. M., and García-Berthou, E. (2017). “I. Irena Perglová, W. Rabitsch, “Displacement and local extinction of native and endemic species,” in Impact of biological invasions on ecosystem services. Editors M. Vila, and P. E. Hulme (Cham, Switzerland: Springer). Chap. 10.

Regnier, F. E., and Wilson, E. O. (1971). Chemical communication and ’propaganda’ in slave maker ants. Science 172, 267–269. doi:10.1126/science.172.3980.267

Sakamoto, Y., Kumagai, N., and Goka, K. (2017). Declaration of local chemical eradication of the Argentine ant: bayesian estimation with a multinomial-mixture model. Sci. Rep. 7, 3389. doi:10.1038/s41598-017-03516-z

Sakamoto, Y., Mori, H., Ohnishi, H., Imai, H., Kishimoto, T., Toda, M., et al. (2016). Surveys of the ant faunas at ports of Tokyo bay and the ogasawara islands. Appl. Entomol. Zool. 51, 661–667. doi:10.1007/s13355-016-0444-1

Sato, K., Sakamoto, H., Hirata, M., Kidokoro-Kobayashi, M., Ozaki, M., Higashi, S., et al. (2017). Relationship among establishment durations, kin relatedness, aggressiveness, and distance between populations of eight invasive Argentine ant (Hymenoptera: Formicidae) supercolonies in Japan. J. Econ. Entomol. 110, 1676–1684. doi:10.1093/jee/tox141

Sharma, K. R., Enzmann, B. L., Schmidt, Y., Moore, D., Jones, G. R., Parker, J., et al. (2015). Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Rep. 12, 1261–1271. doi:10.1016/j.celrep.2015.07.031

Silverman, J., and Brightwell, R. J. (2008). The Argentine ant: Challenges in managing an invasive unicolonial pest. Annu. Rev. Entomol. 53, 231–252. doi:10. 1146/annurev.ento.53.103106.093450

Suarez, A. V., and Case, T. J. (2002). Bottom-up effects on persistence of a specialist predator ant invasions and horned lizards. Ecol. Appl. 12, 291–298. doi:10. 1890/1051-0761(2002)012[0291:bueopo]2.0.co;2

Suhr, E. L., O’Dowd, D. J., McKechnie, S. W., and Mackay, D. A. (2010). Genetic structure, behaviour and invasion history of the Argentine ant supercolony in Australia. Evol. Appl. 4, 471–484. doi:10.1111/j.1752-4571.2010.00161.x

Takeichi, Y., Uebi, T., Miyazaki, N., Murata, K., Yasuyama, K., Inoue, K., et al. (2018). Putative neural network within an olfactory sensory unit for nestmate and non-nestmate discrimination in the Japanese carpenter ant: the ultra-structures and mathematical simulation. Front. Cell. Neurosci. 12, 310. doi:10.3389/fncel.2018. 00310

Tsutsui, N. D., Suarez, A. V., Holway, D. A., and Case, T. J. (2000). Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. U. S. A. 97, 5948–5953. doi:10.1073/pnas.100110397

Van Wilgenburg, E., Torres, C. W., and Tsutsui, N. D. (2010). The global expansion of a single ant supercolony: a transcontinental Argentine ant supercolony. Evol. Appl. 3, 136–143. doi:10.1111/j.1752-4571.2009.00114.x

Wang, Y. F., Chen, C. S., Girdaukas, G., and Sih, C. J. (1984). Bifunctional chiral synthons via biochemical methods. 3. Optical purity enhancement in enzymic asymmetric catalysis. J. Am. Chem. Soc. 106, 3695–3696. doi:10.1021/ja00324a062

Ward, D. F., Green, C., Harris, R. J., Hartley, S., Lester, P. J., Stanley, M. C., et al. (2010). Twenty years of Argentine ants in New Zealand: past research and future priorities for applied management. N. Z. Entomol. 33, 68–78. doi:10.1080/00779962. 2010.9722193

Westermann, F. L., Bell, V. A., Suckling, D. M., and Lester, P. J. (2016). Synthetic pheromones as a management technique - dispensers reduce Linepithema humile activity in a commercial vineyard. Pest Manag. Sci. 72, 719–724. doi:10.1002/ps.4043

Yabuki, Y., Koide, T., Miyasaka, N., Wakisaka, N., Masuda, M., Ohkura, M., et al. (2016). Olfactory receptor for prostaglandin F2α mediates male fish courtship behavior. Nat. Neurosci. 19, 897–904. doi:10.1038/nn.4314

Zube, C., Kleineidam, C. J., Kirschner, S., Neef, J., and Röessler, W. (2008). Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. J. Comp. Neurol. 506, 425–441. doi:10.1002/cne. 21548

Zube, C., and Röessler, W. (2008). Caste- and sex-specific adaptations within the olfactory pathway in the brain of the ant Camponotus floridanus. Arthropod Struct. Dev. 37, 469–479. doi:10.1016/j.asd.2008.05.004

参考文献をもっと見る