リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「DLTS法を用いたGeゲートスタックの欠陥評価に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

DLTS法を用いたGeゲートスタックの欠陥評価に関する研究

温, 偉辰 WEN, WEI-CHEN ウェン, ウェイチェン 九州大学

2020.09.25

概要

Si ultra large scale integration (ULSI) industry has met the limitation on scaling. To keep improving the performance of metal-oxide-semiconductor field-effect transistors (MOSFETs), changing channel materials to high mobility materials is necessary. Ge is an attracting candidate due to its high electron and hole mobilities. A high-quality gate stack is the key to the high mobility Ge MOSFET, and a GeO2 interlayer can reduce the interface traps (ITs); however, border traps (BTs) in GeO2 and/or other oxide layers remain a problem. To reduce these traps and improve the quality of Ge gate stacks, a trap characterization of Ge gate stacks is necessary. Aim of this study is to develop a BT evaluation method and characterize the Ge gate stacks by using deep-level transient spectroscopy (DLTS) with a lock-in integrator. In this study, two kinds of Ge gate stacks are characterized, and the influence of BTs and ITs on Ge p-MOSFETs are studied.

The equations of IT density (Dit) and BT concentration (Nbt) in Ge metal-oxide-semiconductor capacitor (MOSCAP) were derived for a lock-in DLTS. Since IT and BT are applicable to different equations, signal identification and separation are important. The bias selecting for measurement was clearly defined. Due to the different capture and emission mechanisms of IT and BT, Dit and Nbt show different units.

IT and BT signals were successfully separated based on their different dependences on the intensity of injection pulses, and the BTs in GeO2 were evaluated through investigating MOSCAPs with SiO2/GeO2/Ge gate stacks fabricated by thermal and plasma oxidation. By using p-type MOSCAPs, BTs at the position of 0.4 nm from GeO2/Ge interface were measured. By using n-type MOSCAPs, BTs at the position range of 2.8–3.4 nm from the GeO2/Ge interface were measured, of which Nbt varied little in the depth direction. The influences of the processing temperatures, oxidation methods, and Al-PMA on the quality of the gate stacks were clearly observed. Nbt values of both p- and n-MOSCAPs are in the same range (~1018 cm-3). Even though the Nbt value in n-MOSCAPs is not especially high, the low tunneling barrier allows the capture/emission process more aggressive. Passivation or elimination of BTs in GeO2 near the conduction band edge of Ge is essential to realize high mobility Ge n-MOSFETs.

To investigate the BTs in other oxide materials, Al2O3/GeOx/p-Ge gate stacks were characterized. Through evaluating the gate stacks with different GeOx thicknesses, the respective BTs in Al2O3, the Al2O3/GeOx interface region, and GeOx were detected. Dit near the midgap is lower in the MOSCAPs with thicker GeOx, while Dit near the valence band is lower in the MOSCAP with thinner GeOx. The Nbt in Al2O3 (6-9 × 1017 cm-3) is lower than those in GeOx (~2 × 1018 cm-3), and the highest Nbt (~1 × 1019 cm-3) was found in the Al2O3/GeOx interface region.

To study the influence of ITs and BTs on mobility, Ge p-MOSFETs with Al2O3/GeOx/p-Ge gate stacks were fabricated and analyzed. We confirmed that the ITs and the BTs near the valence band edge of Ge affect the mobility of Ge p-MOSFETs in the high-field region.

The BT evaluation method established in this study and the finding of the influence of ITs and BTs on mobility of p-Ge MOSFETs are an important step of the Ge MOSFETs improvement. The understanding may be also applicable to other materials or devices.

参考文献

[1] Electronic system semiconductor content. https://www.icinsights.com/news/bulletins/Semi-Content-In-Electronic-Systems-Forecast-To-Drop-To-264-In-2019/.

[2] J. S. Kilby, Invention of the integrated circuit, IEEE Trans. Electron Devices. 23 (1976) 648–654. https://doi.org/10.1109/T-ED.1976.18467.

[3] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, Third edit, Wiley, New Jersey, 2007, p. 303.

[4] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, A. R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-State Circuits. 9 (1974) 256–268. https://doi.org/10.1109/JSSC.1974.1050511.

[5] M. T. Bohr, R. S. Chau, T. Ghani, K. Mistry, The High-k Solution, IEEE Spectr. 44 (2007) 29–35. https://doi.org/10.1109/MSPEC.2007.4337663.

[6] T. Acosta, S. Sood, Engineering strained silicon-looking back and into the future, IEEE Potentials. 25 (2006) 31–34. https://doi.org/10.1109/MP.2006.1664067.

[7] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.- J. King, J. Bokor, C. Hu, FinFET-a self-aligned double-gate MOSFET scalable to 20 nm, IEEE Trans. Electron Devices. 47 (2000) 2320–2325. https://doi.org/10.1109/16.887014.

[8] S. Takagi, R. Zhang, J. Suh, S.-H. Kim, M. Yokoyama, K. Nishi, M. Takenaka, III–V/Ge channel MOS device technologies in nano CMOS era, Jpn. J. Appl. Phys. 54 (2015) 06FA01. http://dx.doi.org/10.7567/JJAP.54.06FA01.

[9] R. M. Todi, M. M. Heyns, Germanium: The semiconductor comeback material, IEEE Potentials. 26 (2007) 34–38. https://doi.org/10.1109/MP.2007.343055.

[10] S. Takagi, T. Iisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, N. Sugiyama, Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance, IEEE Trans. Electron Devices. 55 (2008) 21–39. https://doi.org/10.1109/TED.2007.911034.

[11] A. Toriumi, T. Nishimura, Germanium CMOS potential from material and process perspectives: Be more positive about germanium, Jpn. J. Appl. Phys. 57 (2018) 10101. http://doi.org/10.7567/JJAP.57.010101.

[12] A. Dimoulas, P. Tsipas, A. Sotiropoulos, E. K. Evangelou, Fermi-level pinning and charge neutrality level in germanium, Appl. Phys. Lett. 89 (2006) 252110. https://doi.org/10.1063/1.2410241.

[13] T. Nishimura, K. Kita, A. Toriumi, Evidence for strong Fermi-level pinning due to metal- induced gap states at metal/germanium interface, Appl. Phys. Lett. 91 (2007) 123123. https://doi.org/10.1063/1.2789701.

[14] T. Nishimura, K. Kita, A. Toriumi, A Significant Shift of Schottky Barrier Heights at Strongly Pinned Metal/Germanium Interface by Inserting an Ultra-Thin Insulating Film, Appl. Phys. Express. 1 (2008) 051406. https://doi.org/10.1143/apex.1.051406.

[15] M. Iyota, K. Yamamoto, D. Wang, H. Yang, H. Nakashima, Ohmic contact formation on n-type Ge by direct deposition of TiN, Appl. Phys. Lett. 98 (2011) 192108. https://doi.org/10.1063/1.3590711.

[16] A. Satta, E. Simoen, T. Clarysse, T. Janssens, A. Benedetti, B. De Jaeger, M. Meuris, W. Vandervorst, Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium, Appl. Phys. Lett. 87 (2005) 172109. https://doi.org/10.1063/1.2117631.

[17] R. Duffy, M. Shayesteh, I. Kazadojev, R. Yu, Germanium doping challenges, in: 2013 13th Int. Work. Junction Technol., 2013: pp. 16–21. https://doi.org/10.1109/IWJT.2013.6644495.

[18] C. O. Chui, L. Kulig, J. Moran, W. Tsai, K. C. Saraswat, Germanium n-type shallow junction activation dependences, Appl. Phys. Lett. 87 (2005) 91909. https://doi.org/10.1063/1.2037861.

[19] K. Morii, T. Iwasaki, R. Nakane, M. Takenaka, S. Takagi, High-Performance GeO2/Ge nMOSFETs With Source/Drain Junctions Formed by Gas-Phase Doping, IEEE Electron Device Lett. 31 (2010) 1092–1094. https://doi.org/10.1109/LED.2010.2061211.

[20] M. Jamil, J. Mantey, E. U. Onyegam, G. D. Carpenter, E. Tutuc, S. K. Banerjee, High- Performance Ge nMOSFETs With n+-p Junctions Formed by “Spin-On Dopant,” IEEE Electron Device Lett. 32 (2011) 1203–1205. https://doi.org/10.1109/LED.2011.2160142.

[21] S.-H. Huang, F.-L. Lu, W.-L. Huang, C.-H. Huang, C. W. Liu, The ~3 × 10-3 Electron Concentration and Low Specific Contact Resistivity of Phosphorus-Doped Ge on Si by In-Situ Chemical Vapor Deposition Doping and Laser Annealing, IEEE Electron Device Lett. 36 (2015) 1114–1117. https://doi.org/10.1109/LED.2015.2478916.

[22] C. Wang, C. Li, G. Lin, W. Lu, J. Wei, W. Huang, H. Lai, S. Chen, Z. Di, M. Zhang, Germanium n+/p Shallow Junction With Record Rectification Ratio Formed by Low- Temperature Preannealing and Excimer Laser Annealing, IEEE Trans. Electron Devices. 61 (2014) 3060–3065. https://doi.org/10.1109/TED.2014.2332461.

[23] R. Milazzo, E. Napolitani, G. Impellizzeri, G. Fisicaro, S. Boninelli, M. Cuscunà, D. De Salvador, M. Mastromatteo, M. Italia, A. La Magna, G. Fortunato, F. Priolo, V. Privitera, A. Carnera, N-type doping of Ge by As implantation and excimer laser annealing, J. Appl. Phys. 115 (2014) 53501. https://doi.org/10.1063/1.4863779.

[24] K. Prabhakaran, F. Maeda, Y. Watanabe, T. Ogino, Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces, Appl. Phys. Lett. 76 (2000) 2244–2246. https://doi.org/10.1063/1.126309.

[25] S. K. Wang (王盛凯), K. Kita, C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, A. Toriumi, Desorption kinetics of GeO from GeO2/Ge structure, J. Appl. Phys. 108 (2010) 54104. https://doi.org/10.1063/1.3475990.

[26] K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, A. Toriumi, Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal– Insulator–Semiconductor Characteristics, Jpn. J. Appl. Phys. 47 (2008) 2349–2353. https://doi.org/10.1143/jjap.47.2349.

[27] A. Mura, I. Hideshima, Z. Liu, T. Hosoi, H. Watanabe, K. Arima, Water Growth on GeO2/Ge(100) Stack and Its Effect on the Electronic Properties of GeO2, J. Phys. Chem. C. 117 (2013) 165–171. https://doi.org/10.1021/jp304331c.

[28] T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura, H. Watanabe, Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO2/Ge metal- oxide-semiconductor devices, Appl. Phys. Lett. 94 (2009) 202112. https://doi.org/10.1063/1.3143627.

[29] K. Hirayama, K. Yoshino, R. Ueno, Y. Iwamura, H. Yang, D. Wang, H. Nakashima, Fabrication of Ge-MOS capacitors with high quality interface by ultra-thin SiO2/GeO2 bi- layer passivation combined with the subsequent SiO2-depositions using magnetron sputtering, Solid. State. Electron. 60 (2011) 122–127. https://doi.org/10.1016/j.sse.2011.01.030.

[30] Y. Nagatomi, T. Tateyama, S. Tanaka, W.-C. Wen, T. Sakaguchi, K. Yamamoto, L. Zhao, D. Wang, H. Nakashima, Mechanism of mobility enhancement in Ge p-channel metal- oxide-semiconductor field-effect transistor due to introduction of Al atoms into SiO2/GeO2 gate stack, Mater. Sci. Semicond. Process. 70 (2017) 246–253. https://doi.org/10.1016/j.mssp.2016.11.014.

[31] R. Asahara, I. Hideshima, H. Oka, Y. Minoura, S. Ogawa, A. Yoshigoe, Y. Teraoka, T. Hosoi, T. Shimura, H. Watanabe, Comprehensive study and design of scaled metal/high- k/Ge gate stacks with ultrathin aluminum oxide interlayers, Appl. Phys. Lett. 106 (2015) 233503. https://doi.org/10.1063/1.4922447.

[32] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, S. Takagi, Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation, Appl. Phys. Lett. 98 (2011) 112902. https://doi.org/10.1063/1.3564902.

[33] S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, Third edit, Wiley, New Jersey, 2007, p. 213.

[34] D. K. Schroeder, Semiconductor Material and Device Chracterization, Third edit, Wiley, New York, 1998, p. 342.

[35] N. Taoka, K. Ikeda, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, S. Takagi, Accurate evaluation of Ge metal—insulator—semiconductor interface properties, J. Appl. Phys. 110 (2011) 64506. https://doi.org/10.1063/1.3633517.

[36] D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, K. C. Saraswat, Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density, IEEE Electron Device Lett. 29 (2008) 328–

330. https://doi.org/10.1109/LED.2008.918272.

[37] H. Nakashima, D. Wang, T. Noguchi, K. Itani, J. Wang, L. Zhao, Method for Detecting Defects in Silicon-On-Insulator Using Capacitance Transient Spectroscopy, Jpn. J. Appl. Phys. 43 (2004) 2402–2408. https://doi.org/10.1143/jjap.43.2402.

[38] K. Yamasaki, M. Yoshida, T. Sugano, Deep Level Transient Spectroscopy of Bulk Traps and Interface States in Si MOS Diodes, Jpn. J. Appl. Phys. 18 (1979) 113–122. https://doi.org/10.1143/jjap.18.113.

[39] M. Schulz, N. M. Johnson, Transient capacitance measurements of hole emission from interface states in MOS structures, Appl. Phys. Lett. 31 (1977) 622–625. https://doi.org/10.1063/1.89774.

[40] T. J. Tredwell, C. R. Viswanathan, Determination of interface-state parameters in a MOS capacitor by DLTS, Solid. State. Electron. 23 (1980) 1171–1178. https://doi.org/10.1016/0038-1101(80)90029-5.

[41] D. Wang, S. Kojima, K. Sakamoto, K. Yamamoto, H. Nakashima, An accurate characterization of interface-state by deep-level transient spectroscopy for Ge metal- insulator-semiconductor capacitors with SiO2/GeO2 bilayer passivation, J. Appl. Phys. 112 (2012) 083707. https://doi.org/10.1063/1.4759139.

[42] H. Matsubara, T. Sasada, M. Takenaka, S. Takagi, Evidence of low interface trap density in GeO2∕Ge metal-oxide-semiconductor structures fabricated by thermal oxidation, Appl. Phys. Lett. 93 (2008) 32104. https://doi.org/10.1063/1.2959731.

[43] Y. Fukuda, Y. Yazaki, Y. Otani, T. Sato, H. Toyota, T. Ono, Low-Temperature Formation of High-Quality GeO2 Interlayer for High-κ Gate Dielectrics/Ge by Electron-Cyclotron- Resonance Plasma Techniques, IEEE Trans. Electron Devices. 57 (2010) 282–287. https://doi.org/10.1109/TED.2009.2035030.

[44] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, A. Toriumi, High-Electron-Mobility Ge/GeO2 n-MOSFETs With Two-Step Oxidation, IEEE Trans. Electron Devices. 58 (2011) 1295–1301. https://doi.org/10.1109/TED.2011.2111373.

[45] D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P.A. Pianetta, H.-S.P. Wong, K.C. Saraswat, High-Mobility Ge N-MOSFETs and Mobility Degradation Mechanisms, IEEE Trans. Electron Devices. 58 (2011) 59–66. https://doi.org/10.1109/TED.2010.2088124.

[46] M. Ke, X. Yu, R. Zhang, J. Kang, C. Chang, M. Takenaka, S. Takagi, Fabrication and MOS interface properties of ALD AlYO3/GeOx/Ge gate stacks with plasma post oxidation, Microelectron. Eng. 147 (2015) 244–248. https://doi.org/10.1016/j.mee.2015.04.079.

[47] K. Tanaka, R. Zhang, M. Takenaka, S. Takagi, Quantitative evaluation of slow traps near Ge MOS interfaces by using time response of MOS capacitance, Jpn. J. Appl. Phys. 54 (2015) 04DA02. http://dx.doi.org/10.7567/JJAP.54.04DA02.

[48] D. Vuillaume, J. C. Bourgoin, M. Lannoo, Oxide traps in Si-SiO2 structures characterized by tunnel emission with deep-level transient spectroscopy, Phys. Rev. B. 34 (1986) 1171– 1183. https://doi.org/10.1103/PhysRevB.34.1171.

[49] H. Lakhdari, D. Vuillaume, J. C. Bourgoin, Spatial and energetic distribution of Si-SiO2 near-interface states, Phys. Rev. B. 38 (1988) 13124–13132. https://doi.org/10.1103/PhysRevB.38.13124.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る