リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analysis of boron neutron capture reaction sensitivity using Monte Carlo simulation and proposal of a new dosimetry index in boron neutron capture therapy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analysis of boron neutron capture reaction sensitivity using Monte Carlo simulation and proposal of a new dosimetry index in boron neutron capture therapy

Takeno, Satoshi Tanaka, Hiroki Ono, Koji Mizowaki, Takashi Suzuki, Minoru 京都大学 DOI:10.1093/jrr/rrac038

2022.09

概要

Boron neutron capture therapy is a cellular-scale heavy-particle therapy. The factor determining the biological effects in the boron neutron capture reaction (BNCR) is the value of αboron ⁠, which is the alpha component in the Linear Quadratic (LQ) model. Recently, the factor determining the value of αboron has been revealed to correspond to the structural features of the tumor tissue. However, the relationship and mechanism have yet to be thoroughly studied. In this study, we simulated BNCR in tissues using the Monte Carlo simulation technique and examined the factors that determine the value of αboron ⁠. According to this simulation, the nuclear-cytoplasmic (N/C) ratio, nuclear diameter and heterogeneity of the distribution of boron in the tissue have been suggested to determine the value of αboron ⁠. Moreover, we proposed Biological Effectivity (BE) as a new dosimetry index based on the surviving fraction (SF), extending the concept of absolute biological effectiveness (ABE) in a previous report.

この論文で使われている画像

参考文献

1. Suzuki M. Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. IntJ Clin Oncol 2020;25:43–50.

2. Morris GM, Coderre JA, Hopewell JW et al. Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol 1994;32:144–53.

3. Coderre JA, Makar MS, Micca PL et al. Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9l rat gliosarcoma in vitro and in vivo. IntJ Radiat Oncol Biol Phys 1993;27:1121–9.

4. Sato T, Masunaga SI, Kumada H et al. Microdosimetric Modeling of biological effectiveness for boron neutron capture therapy con- sidering intra- and intercellular heterogeneity in 10B distribution. Sci Rep 2018;8:988.

5. Ono K, Tanaka H, Suzuki M. Reevaluation of CBE value of BPA for hepatocytes. Appl Radiat Isot 2020;161:109159.

6. Gonzalez SJ, Cruz GAS. The photon-isoeffective dose in boron neutron capture therapy. Radiat Res 2012;178:609–21.

7. Aihara T, Hiratsuka J. Evaluation of Fluoride-18-Labeled Boronophenylalanine-positron emission tomography imaging for the assessment of boron neutron capture therapy in patients with recurrent head and neck squamous cell carcinoma. Otolaryngology 2016;6:277. https://doi.org/10.4172/2161-119x.1000277.

8. Ono K, Tanaka H, Tamari Y et al. Proposal for determining abso- lute biological effectiveness of boron neutron capture therapy - the effect of 10B(n,α)7Li dose can be predicted from the nucleocyto- plasmic ratio or the cell size. J Radiat Res 2019;60:29–36.

9. Aihara T, Hiratsuka J, Kamitani N et al. Boron neutron cap- ture therapy for head and neck cancer: relevance of nuclear- cytoplasmic volume ratio and anti-tumor effect. -a preliminary report. Appl Radiat Isot 2020;163:109212.

10. Yoshida F, Matsumura A, Shibata Y et al. Cell cycle dependence of boron uptake from two boron compounds used for clinical neutron capture therapy. Cancer Lett 2002;187:135–41.

11. Cooper GM. The Cell: AMolecular Approach, 2nd edn. Sunderland (MA): Sinauer Associates, 2000.

12. Takeno S, Tanaka H, Watanabe T et al. Quantitative autoradiog- raphy in boron neutron capture therapy considering the particle ranges in the samples. Phys Med 2021;82: 306–20.

13. Van Vliet-Vroegindewej C, Wheeler F, Stecher-Rasmussen F et al. Microdosimetry model for boron neutron capture therapy: II. Theoretical estimation of the effectiveness function and surviving fractions. Radiat Res 2001;155:498–502.

14. Jul N, Gabel D, Foster S et al. The Monte Carlo simulation of the biological effect of the 10B(n, alpha)7Li reaction in cells and tissue and its implication for boron neutron capture therapy. Radiat Res 1987;111:14–25.

15. Ono K, Masunaga SI, Kinashi Y et al. Radiobiological evidence suggesting heterogeneous microdistribution of boron compounds in tumors: its relation to quiescent cell population and tumor cure in neutron capture therapy. Int J Radiat Oncol Biol Phys 1996;34:1081–6.

16. Wongthai P, Hagiwara K, Miyoshi Y et al. Boronophenylala- nine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci 2015; 106:279–86.

17. Chandra S, Lorey DR, Smith DR. Quantitative subcellular sec- ondary ion mass spectrometry (SIMS) imaging of boron-10 and boron-11 isotopes in the same cell delivered by two combined BNCT drugs: in vitro studies on human glioblastoma T98G cells. Radiat Res 2002;157:700–10.

18. Hattori Y, Ishimura M, Ohta Y et al. Detection of boronic acid derivatives in cells using a fluorescent sensor. Org Biomol Chem 2015;13:6927–30.

19. Wada Y, Hirose K, Harada T et al. Impact of oxygen status on 10B-BPA uptake into human glioblastoma cells, referring to significance in boron neutron capture therapy. J Radiat Res 2018;59:122–8.

20. Lu X. The role of large neutral amino acid transporter (LAT1) in cancer. Curr Cancer Drug Targets 2019;19:863–76.

21. Taylor PM. Role of amino acid transporters in amino acid sens- ing. AmJ Clin Nutr 2014;1:223S–30S. https://doi.org/10.3945/a jcn.113.070086.

22. Zhou H, Hong M, Chai Y et al. Consequences of cytoplas- mic irradiation: studies from microbeam. J Radiat Res 2009;50: 1–10.

23. Sato K, Imai T, Okayasu R et al. Heterochromatin domain number correlates with X-ray and carbon-ion radiation resistance in cancer cells. Radiat Res 2014;182:408–19.

24. Caswell RS, Coyne JJ, Randolph ML. Kerma factors for neutron energies below 30 MeV. Radiat Res 1980;83:217–54.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る