リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inactivation of the PD-1-dependent immunoregulation in mice exacerbates contact hypersensitivity resembling immune-related adverse events」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inactivation of the PD-1-dependent immunoregulation in mice exacerbates contact hypersensitivity resembling immune-related adverse events

Ashoori, Matin Dokht 京都大学 DOI:10.14989/doctor.k23105

2021.03.23

概要

The expression of PD-1 as a co-inhibitory receptor suppresses the effector T-cell responses and its blockade has been proven to be a durable strategy for strengthening immune responses in cancer treatment. This effective blockade of the PD-1 pathway provides a promising strategy of immunotherapy. Expanding the use of these immune checkpoint blockades in addition to unprecedented success in advanced cancer treatment, sometimes is along with detrimental disorder of immune-related adverse events (irAE). This irAE is reported in many patients who underwent PD-1 blockade therapy and among which dermatitis-like skin disease is the most frequent. Inflammatory tissue damage in irAE is progressive in some patients and in rare cases irAE reported critically dangerous in which cancer-immunotherapy was discontinued. Therefore, proactive management of irAE to prevent exacerbation is essential.

In this study, I evaluated that in what respect inactivation of the PD-1/PD-L1 pathway causes aggravated skin inflammation. To this end, an exacerbated oxazolone-induced contact hypersensitivity (CHS) by anti-PD-L1 mAb treatment has been used. This murine model consists of two distinct phases, a sensitization phase which begins by a topical application of oxazolone on the shaved abdomen, and an elicitation phase following frequent challenges with the same hapten on the ear. As a result, anti-PD-L1 mAb treatment in both phases caused a massive infiltration of CD8+ T cells into the inflamed tissue associated with significant ear edema. Consistent with that, an elevated number of CD8+ T cells and remarkable ear swelling has been observed in PD-1-/- mice.

Along with T cells, NK and dendritic cells were found to express a distinct level of PD-1 in the inflamed tissue. However only PD-1+ expressing T cells may have an indispensable role in exaggerating dermatitis following anti-PD-L1 mAb treatment. Multiple episodes of anti-PD-L1 mAb treatment in RAG2-/- mice did not enhance the ear inflammation.

The blockade of PD-L1 during the sensitization phase remarkably promoted the development of oxazolone-reactive effector T cells in draining Lymph nodes. Since an intensified CHS was guaranteed by the presence of oxazolone-specific T cells even though anti-PD-L1 mAb treatment was withheld during the elicitation phase.

Enhancement of local CD8+ T cell-dominant immune responses by PD-L1 blockade was correlated with the upregulation of CXCL9 and CXCL10 ligands of CXCR3. As neutralization of CXCR3 prevented the induction of vigorous dermatitis by anti-PD-L1 mAb. Non-hematopoietic CD45- cells identified as predominately responsible for upregulation of CXCL9 and CXCL10 in the inflamed ear following inactivation of the PD-1/PD-L1 pathway.

To generate skin inflammation similar to that observed in human dermal irAE a suboptimal dose of oxazolone has been used and as a result, neither a significant tissue swelling nor T cell accumulation in the ear was recognized. As opposed, immunopotentiation by anti-PD-L1 mAb helped to rise the subtle level of inflammation to visible dermatitis and increased CD4+ and CD8+ T cell numbers. Therefore, blockade of the PD-1 pathway can transform concealed skin irritation to significant dermatitis. Moreover, induction of T cell-dominant inflammation by anti-PD-L1 mAb was inhibited by the blockade of CXCR3.

In conclusion, the role of PD-1/PD-L1 inactivation in the regulation of skin inflammation was a matter of debate in this study. In this regard, I reproduced a CD8+ T cell-dominant form of cutaneous inflammation by the blockade of PD-L1 to evaluate the emergence mechanism of skin irAE. This exaggerated CHS shares common features with clinical observations in human dermal irAE. Results produced by this study can help a better management of skin irAE to improve the quality of immunotherapy in cancer patients.

この論文で使われている画像

参考文献

Akiba, H., Kehren, J., Ducluzeau, M.T., Krasteva, M., Horand, F., Kaiserlian, D., et al. (2002). Skin inflammation during contact hypersensitivity is mediated by early recruitment of CD8+ T cytotoxic 1 cells inducing keratinocyte apoptosis. J Immunol 168(6), 3079-3087. doi: 10.4049/jimmunol.168.6.3079.

Albanesi, C., Scarponi, C., Sebastiani, S., Cavani, A., Federici, M., De Pità, O., et al. (2000). IL-4 enhances keratinocyte expression of CXCR3 agonistic chemokines. J Immunol 165(3), 1395-1402. doi: 10.4049/jimmunol.165.3.1395.

Bour, H., Peyron, E., Gaucherand, M., Garrigue, J.L., Desvignes, C., Kaiserlian, D., et al. (1995). Major histocompatibility complex class I-restricted CD8+ T cells and class II- restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol 25(11), 3006-3010. doi: 10.1002/eji.1830251103.

Chamoto, K., Chowdhury, P.S., Kumar, A., Sonomura, K., Matsuda, F., Fagarasan, S., et al. (2017). Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci U S A 114(5), E761-E770. doi: 10.1073/pnas.1620433114.

Chamoto, K., Hatae, R., and Honjo, T. (2020). Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int J Clin Oncol 25(5), 790-800. doi: 10.1007/s10147-019-01588-7.

Chow, M.T., Ozga, A.J., Servis, R.L., Frederick, D.T., Lo, J.A., Fisher, D.E., et al. (2019). Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity 50(6), 1498-1512 e1495. doi: 10.1016/j.immuni.2019.04.010.

Coleman, E.L., Olamiju, B., and Leventhal, J.S. (2020). The life-threatening eruptions of immune checkpoint inhibitor therapy. Clin Dermatol 38(1), 94-104. doi: 10.1016/j.clindermatol.2019.10.015.

Dufour, J.H., Dziejman, M., Liu, M.T., Leung, J.H., Lane, T.E., and Luster, A.D. (2002). IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol 168(7), 3195-3204. doi: 10.4049/jimmunol.168.7.3195.

Gamradt, P., Laoubi, L., Nosbaum, A., Mutez, V., Lenief, V., Grande, S., et al. (2019). Inhibitory checkpoint receptors control CD8(+) resident memory T cells to prevent skin allergy. J Allergy Clin Immunol 143(6), 2147-2157 e2149. doi: 10.1016/j.jaci.2018.11.048.

Gocinski, B.L., and Tigelaar, R.E. (1990). Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J Immunol 144(11), 4121-4128.

Goebeler, M., Trautmann, A., Voss, A., Bröcker, E.V., Toksoy, A., and Gillitzer, R. (2001). Differential and sequential expression of multiple chemokines during elicitation of allergic contact hypersensitivity. Am J Pathol 158(2), 431-440. doi: 10.1016/s0002-9440(10)63986-7.

Goldinger, S.M., Stieger, P., Meier, B., Micaletto, S., Contassot, E., French, L.E., et al. (2016). Cytotoxic Cutaneous Adverse Drug Reactions during Anti-PD-1 Therapy. Clin Cancer Res 22(16), 4023-4029. doi: 10.1158/1078-0432.ccr-15-2872.

Gordon, S.R., Maute, R.L., Dulken, B.W., Hutter, G., George, B.M., McCracken, M.N., et al. (2017). PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655), 495-499. doi: 10.1038/nature22396.

Haratake, N., Tagawa, T., Hirai, F., Toyokawa, G., Miyazaki, R., and Maehara, Y. (2018). Stevens-Johnson Syndrome Induced by Pembrolizumab in a Lung Cancer Patient. J Thorac Oncol 13(11), 1798-1799. doi: 10.1016/j.jtho.2018.05.031.

He, D., Wu, L., Kim, H.K., Li, H., Elmets, C.A., and Xu, H. (2009). IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol 183(2), 1463-1470. doi: 10.4049/jimmunol.0804108.

Honda, T., Egawa, G., Grabbe, S., and Kabashima, K. (2013). Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133(2), 303-315. doi: 10.1038/jid.2012.284.

Hsu, J., Hodgins, J.J., Marathe, M., Nicolai, C.J., Bourgeois-Daigneault, M.C., Trevino, T.N., et al. (2018). Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest 128(10), 4654-4668. doi: 10.1172/jci99317.

Hua, C., Boussemart, L., Mateus, C., Routier, E., Boutros, C., Cazenave, H., et al. (2016). Association of Vitiligo With Tumor Response in Patients With Metastatic Melanoma Treated With Pembrolizumab. JAMA Dermatol 152(1), 45-51. doi: 10.1001/jamadermatol.2015.2707.

Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., and Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99(19), 12293-12297. doi: 10.1073/pnas.192461099.

Karyampudi, L., Lamichhane, P., Krempski, J., Kalli, K.R., Behrens, M.D., Vargas, D.M., et al. (2016). PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-κB. Cancer Res 76(2), 239-250. doi: 10.1158/0008-5472.can-15- 0748.

Khan, Z., Di Nucci, F., Kwan, A., Hammer, C., Mariathasan, S., Rouilly, V., et al. (2020). Polygenic risk for skin autoimmunity impacts immune checkpoint blockade in bladder cancer. Proc Natl Acad Sci U S A 117(22), 12288-12294. doi: 10.1073/pnas.1922867117.

Kim, H.K., Guan, H., Zu, G., Li, H., Wu, L., Feng, X., et al. (2006). High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals. J Leukoc Biol 79(4), 686-695. doi: 10.1189/jlb.0805436.

Krempski, J., Karyampudi, L., Behrens, M.D., Erskine, C.L., Hartmann, L., Dong, H., et al. (2011). Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186(12), 6905-6913. doi: 10.4049/jimmunol.1100274.

Mahalingam, S., Chaudhri, G., Tan, C.L., John, A., Foster, P.S., and Karupiah, G. (2001). Transcription of the interferon gamma (IFN-gamma )-inducible chemokine Mig in IFN-gamma-deficient mice. J Biol Chem 276(10), 7568-7574. doi: 10.1074/jbc.M005773200.

Melter, M., Exeni, A., Reinders, M.E., Fang, J.C., McMahon, G., Ganz, P., et al. (2001). Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection. Circulation 104(21), 2558-2564. doi: 10.1161/hc4601.098010.

Michot, J.M., Bigenwald, C., Champiat, S., Collins, M., Carbonnel, F., Postel-Vinay, S., et al. (2016). Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54, 139-148. doi: 10.1016/j.ejca.2015.11.016.

Mitsui, G., Mitsui, K., Hirano, T., Ohara, O., Kato, M., and Niwano, Y. (2003). Kinetic profiles of sequential gene expressions for chemokines in mice with contact hypersensitivity. Immunol Lett 86(2), 191-197. doi: 10.1016/s0165-2478(03)00017-8.

Mori, T., Kabashima, K., Yoshiki, R., Sugita, K., Shiraishi, N., Onoue, A., et al. (2008). Cutaneous hypersensitivities to hapten are controlled by IFN-gamma-upregulated keratinocyte Th1 chemokines and IFN-gamma-downregulated langerhans cell Th2 chemokines. J Invest Dermatol 128(7), 1719-1727. doi: 10.1038/jid.2008.5.

Nakae, S., Komiyama, Y., Narumi, S., Sudo, K., Horai, R., Tagawa, Y., et al. (2003). IL-1- induced tumor necrosis factor-alpha elicits inflammatory cell infiltration in the skin by inducing IFN-gamma-inducible protein 10 in the elicitation phase of the contact hypersensitivity response. Int Immunol 15(2), 251-260. doi: 10.1093/intimm/dxg028.

Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999). Development of lupus- like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif- carrying immunoreceptor. Immunity 11(2), 141-151. doi: 10.1016/s1074- 7613(00)80089-8.

Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., et al. (2001). Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291(5502), 319-322. doi: 10.1126/science.291.5502.319.

O'Leary, J.G., Goodarzi, M., Drayton, D.L., and von Andrian, U.H. (2006). T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7(5), 507-516. doi: 10.1038/ni1332.

Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., and Honjo, T. (2013). A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14(12), 1212-1218. doi: 10.1038/ni.2762.

Okiyama, N., and Katz, S.I. (2014). Programmed cell death 1 (PD-1) regulates the effector function of CD8 T cells via PD-L1 expressed on target keratinocytes. J Autoimmun 53, 1-9. doi: 10.1016/j.jaut.2014.06.005.

Panzer, U., Reinking, R.R., Steinmetz, O.M., Zahner, G., Sudbeck, U., Fehr, S., et al. (2004). CXCR3 and CCR5 positive T-cell recruitment in acute human renal allograft rejection. Transplantation 78(9), 1341-1350. doi: 10.1097/01.tp.0000140483.59664.64.

Pesce, S., Greppi, M., Tabellini, G., Rampinelli, F., Parolini, S., Olive, D., et al. (2017). Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J Allergy Clin Immunol 139(1), 335-346 e333. doi: 10.1016/j.jaci.2016.04.025.

Ritprajak, P., Hashiguchi, M., Tsushima, F., Chalermsarp, N., and Azuma, M. (2010). Keratinocyte-associated B7-H1 directly regulates cutaneous effector CD8+ T cell responses. J Immunol 184(9), 4918-4925. doi: 10.4049/jimmunol.0902478.

Robinson, S., Saleh, J., Curry, J.L., and Mudaliar, K. (2020). Pembrolizumab-Induced Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis in a Patient With Metastatic Cervical Squamous Cell Carcinoma: A Case Report. Am J Dermatopathol 42(4), 292-296. doi: 10.1097/dad.0000000000001527.

Rogado, J., Sánchez-Torres, J.M., Romero-Laorden, N., Ballesteros, A.I., Pacheco-Barcia, V., Ramos-Leví, A., et al. (2019). Immune-related adverse events predict the therapeutic efficacy of anti-PD-1 antibodies in cancer patients. Eur J Cancer 109, 21-27. doi: 10.1016/j.ejca.2018.10.014.

Rouzaire, P., Luci, C., Blasco, E., Bienvenu, J., Walzer, T., Nicolas, J.F., et al. (2012). Natural killer cells and T cells induce different types of skin reactions during recall responses to haptens. Eur J Immunol 42(1), 80-88. doi: 10.1002/eji.201141820.

Salati, M., Pifferi, M., Baldessari, C., Bertolini, F., Tomasello, C., Cascinu, S., et al. (2018). Stevens-Johnson syndrome during nivolumab treatment of NSCLC. Ann Oncol 29(1), 283-284. doi: 10.1093/annonc/mdx640.

Sanmamed, M.F., and Chen, L. (2018). A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 175(2), 313-326. doi: 10.1016/j.cell.2018.09.035.

Saw, S., Lee, H.Y., and Ng, Q.S. (2017). Pembrolizumab-induced Stevens-Johnson syndrome in non-melanoma patients. Eur J Cancer 81, 237-239. doi: 10.1016/j.ejca.2017.03.026.

Sebastiani, S., Albanesi, C., De, P.O., Puddu, P., Cavani, A., and Girolomoni, G. (2002). The role of chemokines in allergic contact dermatitis. Arch Dermatol Res 293(11), 552-559. doi: 10.1007/s00403-001-0276-9.

Strauss, L., Mahmoud, M.A.A., Weaver, J.D., Tijaro-Ovalle, N.M., Christofides, A., Wang, Q., et al. (2020). Targeted deletion of PD-1 in myeloid cells induces antitumor immunity. Sci Immunol 5(43). doi: 10.1126/sciimmunol.aay1863.

Terme, M., Ullrich, E., Aymeric, L., Meinhardt, K., Coudert, J.D., Desbois, M., et al. (2012). Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells. Cancer Res 72(11), 2757-2767. doi: 10.1158/0008-5472.can-11-3379.

Tokuriki, A., Seo, N., Ito, T., Kumakiri, M., Takigawa, M., and Tokura, Y. (2002). Dominant expression of CXCR3 is associated with induced expression of IP-10 at hapten- challenged sites of murine contact hypersensitivity: a possible role for interferon- gamma-producing CD8(+) T cells in IP-10 expression. J Dermatol Sci 28(3), 234-241. doi: 10.1016/s0923-1811(01)00172-4.

Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26), 2443-2454. doi: 10.1056/NEJMoa1200690.

Tsushima, F., Iwai, H., Otsuki, N., Abe, M., Hirose, S., Yamazaki, T., et al. (2003). Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses. Eur J Immunol 33(10), 2773-2782. doi: 10.1002/eji.200324084.

Wang, J., Okazaki, I.M., Yoshida, T., Chikuma, S., Kato, Y., Nakaki, F., et al. (2010). PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol 22(6), 443-452. doi: 10.1093/intimm/dxq026.

Wang, J., Yoshida, T., Nakaki, F., Hiai, H., Okazaki, T., and Honjo, T. (2005). Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A 102(33), 11823-11828. doi: 10.1073/pnas.0505497102.

Young, A., Quandt, Z., and Bluestone, J.A. (2018). The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy. Cancer Immunol Res 6(12), 1445-1452. doi: 10.1158/2326-6066.cir-18-0487.

参考文献をもっと見る