リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comprehensive analysis of downstream transcriptomic features in the competitive relationships between BEH3 and other BES/BZR transcription factors」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comprehensive analysis of downstream transcriptomic features in the competitive relationships between BEH3 and other BES/BZR transcription factors

Furuya, Tomoyuki 古谷, 朋之 フルヤ, トモユキ Kondo, Yuki 神戸大学

2023.04.01

概要

Members of a plant-specific BES/BZR transcription factor (TF) family including BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1) regulate various developmental processes and environmental responses. Recently, we reported that BES1/BZR1 Homolog 3 (BEH3) exhibited a competitive effect toward other BES/BZR TFs. In this study, we analyzed transcriptome profiles in BEH3-overexpressing plants and compared them with those of BES1 and BZR1 double gain-of-function mutants. We identified 46 differentially expressed genes (DEGs), which were downregulated in the gain-of-function mutants of BES1 and BZR1 but upregulated upon BEH3 overexpression. In these DEGs, putative BES1 and BZR1 direct-targeted genes were highly enriched. In addition, these DEGs contained not only known brassinosteroid biosynthetic enzymes, but also some NAC TFs, which negatively regulate brassinosteroid-inactivating enzymes. Moreover, the iron sensor and the iron-deficient response-related bHLH TFs were also included. Taken together, our findings indicate that a competitive relationship between BEH3 and other BES/BZR TFs exists in various BES/BZR binding target genes.

参考文献

Christianson, J. A., Dennis, E. S., Llewellyn, D. J., and Wilson,

I. W. (2010) ATAF NAC transcription factors: regulators of

plant stress signaling. Plant Signal. Behav. 5, 428–432.

Furuya, T., Saito, M., Uchimura, H., Satake, A., Nosaki, S.,

Miyakawa, T., Shimadzu, S., Yamori, W., Tanokura, M.,

Fukuda, H., et al. (2021) Gene co-expression network analysis identifies BEH3 as a stabilizer of secondary vascular

development in Arabidopsis. Plant Cell 33, 2618–2636.

Kondo, Y., Ito, T., Nakagami, H., Hirakawa, Y., Saito, M., Tamaki,

T., Shirasu, K., and Fukuda, H. (2014) Plant GSK3 proteins

regulate xylem cell differentiation downstream of TDIFTDR signalling. Nat. Commun. 5, 3504.

Kono, A., and Yin, Y. (2020) Updates on BES1/BZR1 regulatory

networks coordinating plant growth and stress responses.

Front. Plant Sci. 11, 617162.

Liang, G. (2022) Iron uptake, signaling, and sensing in plants.

Plant Commun. 3, 100349.

McLeay, R. C., and Bailey, T. L. (2010) Motif Enrichment

Analysis: a unified framework and an evaluation on ChIP

data. BMC Bioinformatics 11, 165.

Nolan, T. M., Vukašinović, N., Liu, D., Russinova, E., and Yin,

Y. (2020) Brassinosteroids: multidimensional regulators of

plant growth, development, and stress responses. Plant

Cell 32, 295–318.

Nosaki, S., Mitsuda, N., Sakamoto, S., Kusubayashi, K.,

Yamagami, A., Xu, Y., Bui, T. B. C., Terada, T., Miura, K.,

Nakano, T., et al. (2022) Brassinosteroid-induced gene

repression requires specific and tight promoter binding of

BIL1/BZR1 via DNA shape readout. Nat. Plants 8, 1440–

1452.

Obayashi, T., Hibara, H., Kagaya, Y., Aoki, Y., and Kinoshita, K.

(2022) ATTED-II v11: a plant gene coexpression database

using a sample balancing technique by subagging of principal components. Plant Cell Physiol. 63, 869–881.

O’Malley, R. C., Huang, S. C., Song, L., Lewsey, M. G., Bartlett,

A., Nery, J. R., Galli, M., Gallavotti, A., and Ecker, J. R.

(2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292.

Peng, H., and Neff, M. M. (2021) Two ATAF transcription factors ANAC102 and ATAF1 contribute to the suppression of

cytochrome P450-mediated brassinosteroid catabolism in

Arabidopsis. Physiol. Plant. 172, 1493–1505.

Peng, H., Zhao, J., and Neff, M. M. (2015) ATAF2 integrates

Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis. Development 142, 4129–4138.

Saito, M., Kondo, Y., and Fukuda, H. (2018) BES1 and BZR1

redundantly promote phloem and xylem differentiation.

Plant Cell Physiol. 59, 590–600.

Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., He,

J.-X., Bai, M.-Y., Zhu, S., Oh, E., et al. (2010) Integration of

brassinosteroid signal transduction with the transcription

network for plant growth regulation in Arabidopsis. Dev.

Cell 19, 765–777.

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R.,

Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P.,

et al. (2021) The STRING database in 2021: customizable

protein-protein networks, and functional characterization of

user-uploaded gene/measurement sets. Nucleic Acids Res.

49, D605–D612.

Van Nguyen, T., Park, C.-R., Lee, K.-H., Lee, S., and Kim, C.

S. (2021) BES1/BZR1 Homolog 3 cooperates with E3 ligase

AtRZF1 to regulate osmotic stress and brassinosteroid

responses in Arabidopsis. J. Exp. Bot. 72, 636–653.

Wang, B., Li, Y., and Zhang, W.-H. (2012) Brassinosteroids are

involved in response of cucumber (Cucumis sativus) to iron

deficiency. Ann. Bot. 110, 681–688.

Wang, B., Li, G., and Zhang, W.-H. (2015) Brassinosteroids are

involved in Fe homeostasis in rice (Oryza sativa L.). J.

Exp. Bot. 66, 2749–2761.

Wang, N., Cui, Y., Liu, Y., Fan, H., Du, J., Huang, Z., Yuan, Y.,

Wu, H., and Ling, H.-Q. (2013) Requirement and functional

redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol.

Plant 6, 503–513.

Wei, Z., and Li, J. (2020) Regulation of brassinosteroid homeostasis in higher plants. Front. Plant Sci. 11, 583622.

Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H.,

Anderson, S., Aluru, S., Liu, P., et al. (2011) A brassinosteroid transcriptional network revealed by genomewide identification of BESI target genes in Arabidopsis

thaliana. Plant J. 65, 634–646.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る