リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy (Eschscholzia californica)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy (Eschscholzia californica)

Yamada, Yasuyuki Nishida, Shohei Shitan, Nobukazu Sato, Fumihiko 京都大学 DOI:10.3389/fpls.2021.699326

2021.06.17

概要

Transcription factors of the WRKY family play pivotal roles in plant defense responses, including the biosynthesis of specialized metabolites. Based on the previous findings of WRKY proteins regulating benzylisoquinoline alkaloid (BIA) biosynthesis, such as CjWRKY1—a regulator of berberine biosynthesis in Coptis japonica—and PsWRKY1—a regulator of morphine biosynthesis in Papaver somniferum—we performed genome-wide characterization of the WRKY gene family in Eschscholzia californica (California poppy), which produces various BIAs. Fifty WRKY genes were identified by homology search and classified into three groups based on phylogenetic, gene structure, and conserved motif analyses. RNA sequencing showed that several EcWRKY genes transiently responded to methyl jasmonate, a known alkaloid inducer, and the expression patterns of these EcWRKY genes were rather similar to those of BIA biosynthetic enzyme genes. Furthermore, tissue expression profiling suggested the involvement of a few subgroup IIc EcWRKYs in the regulation of BIA biosynthesis. Transactivation analysis using luciferase reporter genes harboring the promoters of biosynthetic enzyme genes indicated little activity of subgroup IIc EcWRKYs, suggesting that the transcriptional network of BIA biosynthesis constitutes multiple members. Finally, we investigated the coexpression patterns of EcWRKYs with some transporter genes and discussed the diversified functions of WRKY genes based on a previous finding that CjWRKY1 overexpression in California poppy cells enhanced BIA secretion into the medium.

この論文で使われている画像

参考文献

regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin

biosynthesis. Plant Cell Physiol. 50, 2146–2161. doi: 10.1093/pcp/pcp149

Mishra, S., Triptahi, V., Singh, S., Phukan, U. J., Gupta, M. M., Shanker, K.,

et al. (2013). Wound induced tanscriptional regulation of benzylisoquinoline

pathway and characterization of wound inducible PsWRKY transcription factor

from Papaver somniferum. PLoS One 8:e52784. doi: 10.1371/journal.pone.

0052784

Morita, M., Shitan, N., Sawada, K., Van Montagu, M. C., Inzé, D., Rischer, H., et al.

(2009). Vacuolar transport of nicotine is mediated by a multidrug and toxic

compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl.

Acad. Sci. U.S.A. 106, 2447–2452. doi: 10.1073/pnas.0812512106

Payne, R. M., Xu, D., Foureau, E., Teto Carqueijeiro, M. I., Oudin, A., Bernonville,

T. D., et al. (2017). An NPF transporter exports a central monoterpene indole

alkaloid intermediate from the vacuole. Nat. Plants 3:16208. doi: 10.1038/

nplants.2016.208

Rushton, P. J., Somssich, I. E., Ringler, P., and Shen, Q. J. (2010). WRKY

transcription factors. Trends Plant Sci. 15, 247–258. doi: 10.1016/j.tplants.2010.

02.006

Schluttenhofer, C., Pattanaik, S., Patra, B., and Yuan, L. (2014). Analyses of

Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors

reveal involvement in jasmonate signaling. BMC Genom. 15:502. doi: 10.1186/

1471-2164-15-502

Sharma, S. B., and Dixon, R. A. (2005). Metabolic engineering of

proanthocyanidins by ectopic expression of transcription factors in Arabidopsis

thaliana. Plant J. 44, 62–75. doi: 10.1111/j.1365-313X.2005.02510.x

Shitan, N., Bazin, I., Dan, K., Obata, K., Kigawa, K., Ueda, K., et al. (2003).

Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding

cassette protein, in alkaloid transport in Coptis japonica. Proc. Natl. Acad. Sci.

U.S.A. 100, 751–756. doi: 10.1073/pnas.0134257100

Shitan, N., Dalmas, F., Dan, K., Kato, N., Ueda, K., Sato, F., et al. (2013).

Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein

involved in alkaloid transport. Phytochemistry 91, 109–116. doi: 10.1016/j.

phytochem.2012.02.012

Shitan, N., Minami, S., Morita, M., Hayashida, M., Ito, S., Takanashi, K.,

et al. (2014). Involvement of the leaf-specific multidrug and toxic compound

extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in

Nicotiana tabacum. PLoS One 9:e108789. doi: 10.1371/journal.pone.0108789

Shoji, T., Inai, K., Yazaki, Y., Sato, Y., Takase, H., Shitan, N., et al. (2009).

Multidrug and toxic compound extrusion-type transporters implicated in

vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 149, 708–718.

doi: 10.1104/pp.108.132811

Shoji, T., Kajikawa, M., and Hashimoto, T. (2010). Clustered transcription factor

genes regulate nicotine biosynthesis in tobacco. Plant Cell 22, 3390–3409. doi:

10.1105/tpc.110.078543

Suttipanta, N., Pattanaik, S., Kulshrestha, M., Patra, B., Singh, S. K., and Yuan, L.

(2011). The transcription factor CrWRKY1 positively regulates the terpenoid

indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 157, 2081–

2093. doi: 10.1104/pp.111.181834

Takanashi, K., Yamada, Y., Sasaki, T., Yamamoto, Y., Sato, F., and Yazaki, K. (2017).

A multidrug and toxic compound extrusion transporter mediates berberine

accumulation into vacuoles in Coptis japonica. Phytochemistry 138, 76–82. doi:

10.1016/j.phytochem.2017.03.003

Ulker, B., and Somssich, I. E. (2004). WRKY transcription factors: from DNA

binding towards biological function. Curr. Opin. Plant Biol. 7, 491–498. doi:

10.1016/j.pbi.2004.07.012

van der Fits, L., and Memelink, J. (2000). ORCA3, a jasmonate-responsive

transcriptional regulator of plant primary and secondary metabolism. Science

289, 295–297. doi: 10.1126/science.289.5477.295

Wang, L., Zhu, W., Fang, L., Sun, X., Su, L., Liang, Z., et al. (2014). Genomewide identification of WRKY family genes and their response to cold

stress in Vitis vinifera. BMC Plant Biol. 14:103. doi: 10.1186/1471-222914-103

Wei, K. F., Chen, J., Chen, Y. F., Wu, L. J., and Xie, D. X. (2012). Molecular

phylogenetic and expression analysis of the complete WRKY transcription

factor family in maize. DNA Res. 19, 153–164. doi: 10.1093/dnares/dsr048

Wei, Y., Shi, H., Xia, Z., Tie, W., Ding, Z., Yan, Y., et al. (2016). Genome-wide

identification and expression analysis of the WRKY Gene family in cassava.

Front. Plant Sci. 7:25. doi: 10.3389/fpls.2016.00025

Amato, A., Cavallini, E., Walker, A. R., Pezzotti, M., Bliek, M., Quattrocchio, F.,

et al. (2019). The MYB5-driven MBW complex recruits a WRKY factor to

enhance the expression of targets involved in vacuolar hyper-acidification and

trafficking in grapevine. Plant J. 99, 1220–1241. doi: 10.1111/tpj.14419

Apuya, N. R., Park, J. H., Zhang, L., Ahyow, M., Davidow, P., Van Fleet, J., et al.

(2008). Enhancement of alkaloid production in opium and California poppy

by transactivation using heterologous regulatory factors. Plant Biotechnol. J. 6,

160–175. doi: 10.1111/j.1467-7652.2007.00302.x

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., et al.

(2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids

Res. 37, W202–W208. doi: 10.1093/nar/gkp335

Cai, C., Niu, E., Du, H., Zhao, L., Feng, Y., and Guo, W. (2014). Genome-wide

analysis of the WRKY transcription factor gene family in Gossypium raimondii

and the expression of orthologs in cultivated tetraploid cotton. Crop J. 2,

87–101. doi: 10.1016/j.cj.2014.03.001

Chen, M., Yan, T., Shen, Q., Lu, X., Pan, Q., Huang, Y., et al. (2017).

GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin

biosynthesis in Artemisia annua. New Phytol. 214, 304–316. doi: 10.1111/nph.

14373

Dastmalchi, M., Chang, L., Chen, R., Yu, L., Chen, X., Hagel, J. M., et al.

(2019). Purine permease-type benzylisoquinoline alkaloid transporters in

opium poppy. Plant Physiol. 181, 916–933. doi: 10.1104/pp.19.00565

Eulgem, T., Rushton, P. J., Robatzek, S., and Somssich, I. E. (2000). The WRKY

superfamily of plant transcription factors. Trends Plant Sci. 5, 199–206. doi:

10.1016/s1360-1385(00)01600-9

Eulgem, T., and Somssich, I. E. (2007). Networks of WRKY transcription factors in

defense signaling. Curr. Opin. Plant Biol. 10, 366–371. doi: 10.1016/j.pbi.2007.

04.020

Fabre, N., Claparols, C., Richelme, S., Angelin, M. L., Fourasté, I., and Moulis,

C. (2000). Direct characterization of isoquinoline alkaloids in a crude plant

extract by ion-pair liquid chromatography-electrospray ionization tandem

mass spectrometry: example of Eschscholtzia californica. J. Chromatogr. A. 904,

35–46. doi: 10.1016/s0021-9673(00)00919-5

Goossens, A., Häkkinen, S. T., Laakso, I., Seppänen-Laakso, T., Biondi, S.,

De Sutter, V., et al. (2003). A functional genomics approach toward the

understanding of secondary metabolism in plant cells. Proc. Natl. Acad. Sci.

U.S.A. 100, 8595–8600. doi: 10.1073/pnas.1032967100

Gundlach, H., Müller, M. J., Kutchan, T. M., and Zenk, M. H. (1992). Jasmonic acid

is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci.

U.S.A. 89, 2389–2393. doi: 10.1073/pnas.89.6.2389

Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting

regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27,

297–300. doi: 10.1093/nar/27.1.297

Hori, K., Yamada, Y., Purwanto, R., Minakuchi, Y., Toyoda, A., Hirakawa, H., et al.

(2018). Mining of the Uncharacterized Cytochrome P450 genes involved in

alkaloid biosynthesis in california poppy using a draft genome sequence. Plant

Cell Physiol. 59, 222–233. doi: 10.1093/pcp/pcx210

Ikezawa, N., Iwasa, K., and Sato, F. (2007). Molecular cloning and characterization

of methylenedioxy bridge-forming enzymes involved in stylopine biosynthesis

in Eschscholzia californica. FEBS J. 274, 1019–1035. doi: 10.1111/j.1742-4658.

2007.05652.x

Ikezawa, N., Iwasa, K., and Sato, F. (2009). CYP719A subfamily of cytochrome

P450 oxygenases and isoquinoline alkaloid biosynthesis in Eschscholzia

californica. Plant Cell Rep. 28, 123–133. doi: 10.1007/s00299-008-0624-8

Kato, N., Dubouzet, E., Kokabu, Y., Yoshida, S., Taniguchi, Y., Dubouzet, J. G.,

et al. (2007). Identification of a WRKY protein as a transcriptional regulator of

benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol.

48, 8–18. doi: 10.1093/pcp/pcl041

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary

genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

doi: 10.1093/molbev/msw054

Ling, J., Jiang, W., Zhang, Y., Yu, H., Mao, Z., Gu, X., et al. (2011). Genomewide analysis of WRKY gene family in Cucumis sativus. BMC Genom. 12:471.

doi: 10.1186/1471-2164-12-471

Ma, D., Pu, G., Lei, C., Ma, L., Wang, H., Guo, Y., et al. (2009). Isolation and

characterization of AaWRKY1, an Artemisia annua transcription factor that

Frontiers in Plant Science | www.frontiersin.org

15

June 2021 | Volume 12 | Article 699326

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Yamada et al.

WRKY Genes in California Poppy

Xiao, M., Zhang, Y., Chen, X., Lee, E. J., Barber, C. J., Chakrabarty, R., et al.

(2013). Transcriptome analysis based on next-generation sequencing of nonmodel plants producing specialized metabolites of biotechnological interest.

J. Biotechnol. 166, 122–134. doi: 10.1016/j.jbiotec.2013.04.004

Xie, T., Chen, C., Li, C., Liu, J., Liu, C., and He, Y. (2018). Genome-wide

investigation of WRKY gene family in pineapple: evolution and expression

profiles during development and stress. BMC Genom. 19:490. doi: 10.1186/

s12864-018-4880-x

Xu, Y. H., Sun, P. W., Tang, X. L., Gao, Z. H., Zhang, Z., and Wei, J. H. (2020).

Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis

(Lour.) Gilg. Sci. Rep. 10:3018. doi: 10.1038/s41598-020-59597-w

Xu, Y. H., Wang, J. W., Wang, S., Wang, J. Y., and Chen, X. Y. (2004).

Characterization of GaWRKY1, a cotton transcription factor that regulates the

sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol. 135,

507–515. doi: 10.1104/pp.104.038612

Yamada, Y., Hirakawa, H., Hori, K., Minakuchi, Y., Toyoda, A., Shitan, N., et al.

(2021). Comparative analysis using the draft genome sequence of California

poppy (Eschscholzia californica) for exploring the candidate genes involved

in benzylisoquinoline alkaloid biosynthesis. Biosci. Biotechnol. Biochem. 85,

851–859. doi: 10.1093/bbb/zbaa091

Yamada, Y., Motomura, Y., and Sato, F. (2015). CjbHLH1 homologs regulate

sanguinarine biosynthesis in Eschscholzia californica cells. Plant Cell Physiol. 56,

1019–1030. doi: 10.1093/pcp/pcv027

Yamada, Y., Nishida, S., Shitan, N., and Sato, F. (2020). Genome-wide

identification of AP2/ERF transcription factor-encoding genes in California

poppy (Eschscholzia californica) and their expression profiles in response to

methyl jasmonate. Sci. Rep. 10:18066. doi: 10.1038/s41598-020-75069-7

Yamada, Y., and Sato, F. (2013). Transcription factors in alkaloid biosynthesis. Int.

Rev. Cell Mol. Biol. 305, 339–382. doi: 10.1016/B978-0-12-407695-2.00008-1

Frontiers in Plant Science | www.frontiersin.org

Yamada, Y., and Sato, F. (2016). Tyrosine phosphorylation and protein degradation

control the transcriptional activity of WRKY involved in benzylisoquinoline

alkaloid biosynthesis. Sci. Rep. 6:31988. doi: 10.1038/srep31988

Yamada, Y., Shimada, T., Motomura, Y., and Sato, F. (2017). Modulation

of benzylisoquinoline alkaloid biosynthesis by heterologous expression of

CjWRKY1 in Eschscholzia californica cells. PLoS One 12:e0186953. doi: 10.1371/

journal.pone.0186953

Yamada, Y., Yoshimoto, T., Yoshida, S. T., and Sato, F. (2016). Characterization

of the promoter region of biosynthetic enzyme genes involved in berberine

biosynthesis in Coptis japonica. Front. Plant Sci. 7:1352. doi: 10.3389/fpls.2016.

01352

Yamasaki, K., Kigawa, T., Seki, M., Shinozaki, K., and Yokoyama, S. (2013). DNAbinding domains of plant-specific transcription factors: structure, function, and

evolution. Trends Plant Sci. 18, 267–276. doi: 10.1016/j.tplants.2012.09.001

Yamasaki, K., Kigawa, T., Watanabe, S., Inoue, M., Yamasaki, T., Seki, M.,

et al. (2012). Structural Basis for sequence-specific DNA recognition by an

Arabidopsis WRKY transcription factor. J. Biol. Chem. 287, 7683–7691. doi:

10.1074/jbc.M111.279844

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Yamada, Nishida, Shitan and Sato. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these terms.

16

June 2021 | Volume 12 | Article 699326

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る