リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of Primordial Non-Gaussianities on statistical properties of galaxy shapes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of Primordial Non-Gaussianities on statistical properties of galaxy shapes

小粥, 一寛 名古屋大学

2022.06.02

概要

現在有力な宇宙論シナリオでは宇宙初期に急激な加速膨張 (インフレーション) があったとされている。これはスカラー場であるインフラトンが引き起こしたとされ、この量子的ゆらぎにより空間曲率のゆらぎ(初期ゆらぎ)が生じこれが宇宙の構造形成の種となったと考えられている。

ゆらぎの特徴を調べるには統計的な扱いを必要とする。これは理論が各地点におけるゆらぎの大きさを一意に予言せず、ゆらぎの相関の期待値を予言することに由来する。初期ゆらぎは概ねガウス分布に従うが僅かにガウス分布から外れた非ガウス性には宇宙初期の物理の性質が反映される。

宇宙初期は超高エネルギーであったことからインフラトン以外にも素粒子標準模型には含まれない場や粒子が存在する可能性がある。このとき初期ゆらぎを担うインフラトンと未知の粒子が相互作用するとき初期ゆらぎの性質を探ることでその存在を検証できる。このような未知の粒子の存在を予言する理論の一つに超弦理論がある。これは粒子の固有角運動量(スピン)が2より大きい粒子(高スピン粒子)の存在を予言しており高スピン粒子とインフラトンが相互作用していた場合、初期ゆらぎの非ガウス性に特徴を持った痕跡を残すとされている。

本論文では統計的な銀河形状の相関と初期ゆらぎの統計的性質の関係について考察した。早期に銀河形成が始まり十分時間が経過した楕円銀河の形状は、その周囲のダークマターハローの潮汐場と相関すると考えられている。潮汐場は初期ゆらぎを基に生じているため銀河形状の相関を用いて初期ゆらぎの性質を調べられる。申請者はスピン粒子によって生成される初期ゆらぎの非ガウス性のうち低次の三点相関が銀河形状の相関に与える影響について調べた。その結果、銀河形状の相関ではスピン2粒子による初期三点相関の寄与がありその粒子の質量によって痕跡が現れるスケールが異なることを明らかにした。

次に、銀河形状を用いて2よりも大きな高スピン粒子の痕跡を調べる手法について提案した。楕円形状に見える銀河にあっても詳細な形状構造に着目すれば複数の形状モーメントの重ね合わせであることが期待される。申請者はこれに着目し銀河形状をモーメント分解することで、その次数に対応する形状とスピン粒子により生成される初期三点相関との関係性を調べた。その結果、形状モーメントの次数とスピン粒子のスピンが対応して痕跡が現れることを明らかにした。さらに、具体的にスピン4粒子による初期三点相関の寄与が4次モーメントの銀河形状相関に与える影響を調べ、スピン2粒子の場合と同様に質量によってその痕跡が現れるスケールが異なり、重い粒子では小スケール物理の寄与を考慮する必要があることを明らかにした。

本研究で申請者は、初期ゆらぎの非ガウス性が銀河形状に与える影響の検証可能性について調べた。将来の高解像度な銀河撮像サーベイにより銀河形状は高スピン粒子の痕跡探査につがなることを示した。

この論文で使われている画像

参考文献

[1] K. Sato. “First Order Phase Transition of a Vacuum and Expansion of the Universe”. In: Mon. Not. Roy. Astron. Soc. 195 (1981), pp. 467–479.

[2] Alan H. Guth. “The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems”. In: Phys. Rev. D23 (1981). [Adv. Ser. Astrophys. Cosmol.3,139(1987)], pp. 347–356. doi: 10.1103/PhysRevD.23.347.

[3] Y. Akrami et al. “Planck 2018 results. X. Constraints on inflation”. In: (2018). arXiv: 1807.06211 [astro-ph.CO].

[4] T. Matsumura et al. “Mission design of LiteBIRD”. In: J. Low Temp. Phys. 176 (2014), p. 733. doi: 10.1007/s10909- 013- 0996- 1. arXiv: 1311.2847 [astro-ph.IM].

[5] D. Spergel et al. “Wide-Field InfrarRed Survey Telescope-Astrophysics Fo- cused Telescope Assets WFIRST-AFTA 2015 Report”. In: (Mar. 2015). arXiv: 1503.03757 [astro-ph.IM].

[6] R. Laureijs et al. “Euclid Definition Study Report”. In: (Oct. 2011). arXiv: 1110.3193 [astro-ph.CO].

[7] Olivier Doré et al. “Cosmology with the SPHEREX All-Sky Spectral Survey”. In: (Dec. 2014). arXiv: 1412.4872 [astro-ph.CO].

[8] Paul A. Abell et al. “LSST Science Book, Version 2.0”. In: (Dec. 2009). arXiv: 0912.0201 [astro-ph.IM].

[9] M. A. Troxel et al. “Dark Energy Survey Year 1 Results: Cosmological Con- straints from Cosmic Shear”. In: ArXiv e-prints (2017). arXiv: 1708.01538 [astro-ph.CO].

[10] Marika Asgari et al. “KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics”. In: Astron. Astrophys. 645 (2021), A104. doi: 10.1051/0004-6361/202039070. arXiv: 2007.15633 [astro-ph.CO].

[11] Chiaki Hikage et al. “Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data”. In: Submitted to: Publ. Astron. Soc. Jap. (2018). arXiv: 1809.09148 [astro-ph.CO].

[12] Andrew Coutts. “The scale and dispersion of galactic alignments”. In: Monthly Notices of the Royal Astronomical Society 278.1 (Jan. 1996), pp. 87–94. issn: 0035-8711. doi: 10 . 1093 / mnras / 278 . 1 . 87. eprint: https : / / academic . oup. com/ mnras/ article- pdf/ 278/ 1/ 87/ 3460500/ 278- 1- 87. pdf. url: https://doi.org/10.1093/mnras/278.1.87.

[13] Jounghun Lee and Ue-Li Pen. “Cosmic shear from galaxy spins”. In: Astrophys. J. Lett. 532 (2000), p. L5. doi: 10.1086/312556. arXiv: astro-ph/9911328.

[14] Paolo Catelan, Marc Kamionkowski, and Roger D. Blandford. “Intrinsic and extrinsic galaxy alignment”. In: Mon. Not. Roy. Astron. Soc. 320 (2001), pp. L7–L13. doi: 10 . 1046 / j. 1365 - 8711 . 2001 . 04105 . x. arXiv: astro- ph/0005470 [astro-ph].

[15] Ue-Li Pen et al. “Cosmic Tides”. In: (Feb. 2012). arXiv: 1202.5804 [astro-ph.CO].

[16] Juan Martin Maldacena. “Non-Gaussian features of primordial fluctuations in single field inflationary models”. In: JHEP 05 (2003), p. 013. doi: 10.1088/ 1126-6708/2003/05/013. arXiv: astro-ph/0210603.

[17] Clifford Cheung et al. “On the consistency relation of the 3-point function in single field inflation”. In: JCAP 02 (2008), p. 021. doi: 10. 1088/ 1475- 7516/2008/02/021. arXiv: 0709.0295 [hep-th].

[18] N. Bartolo, S. Matarrese, and A. Riotto. “Nongaussianity from inflation”. In: Phys. Rev. D 65 (2002), p. 103505. doi: 10 . 1103 / PhysRevD . 65 . 103505. arXiv: hep-ph/0112261.

[19] Christian T. Byrnes, Ki-Young Choi, and Lisa M. H. Hall. “Conditions for large non-Gaussianity in two-field slow-roll inflation”. In: JCAP 10 (2008), p. 008. doi: 10.1088/1475-7516/2008/10/008. arXiv: 0807.1101 [astro-ph].

[20] David H. Lyth, Carlo Ungarelli, and David Wands. “The Primordial density perturbation in the curvaton scenario”. In: Phys. Rev. D67 (2003), p. 023503. doi: 10.1103/PhysRevD.67.023503. arXiv: astro-ph/0208055 [astro-ph].

[21] Nima Arkani-Hamed and Juan Maldacena. “Cosmological Collider Physics”. In: (2015). arXiv: 1503.08043 [hep-th].

[22] Neal Dalal et al. “The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects”. In: Phys. Rev. D77 (2008), p. 123514. doi: 10 . 1103 / PhysRevD . 77 . 123514. arXiv: 0710.4560 [astro-ph].

[23] Anze Slosar et al. “Constraints on local primordial non-Gaussianity from large scale structure”. In: JCAP 0808 (2008), p. 031. doi: 10.1088/1475- 7516/ 2008/08/031. arXiv: 0805.3580 [astro-ph].

[24] Donghui Jeong, Fabian Schmidt, and Christopher M. Hirata. “Large-scale clus- tering of galaxies in general relativity”. In: Phys. Rev. D 85 (2012), p. 023504. doi: 10.1103/PhysRevD.85.023504. arXiv: 1107.5427 [astro-ph.CO].

[25] Niayesh Afshordi and Andrew J. Tolley. “Primordial non-gaussianity, statistics of collapsed objects, and the Integrated Sachs-Wolfe effect”. In: Phys. Rev. D78 (2008), p. 123507. doi: 10 . 1103 / PhysRevD. 78 . 123507. arXiv: 0806 . 1046 [astro-ph].

[26] Tobias Baldauf et al. “Galaxy Bias and non-Linear Structure Formation in General Relativity”. In: JCAP 10 (2011), p. 031. doi: 10.1088/1475-7516/ 2011/10/031. arXiv: 1106.5507 [astro-ph.CO].

[27] Giovanni Cabass, Enrico Pajer, and Fabian Schmidt. “Imprints of Oscillatory Bispectra on Galaxy Clustering”. In: JCAP 09 (2018), p. 003. doi: 10.1088/ 1475-7516/2018/09/003. arXiv: 1804.07295 [astro-ph.CO].

[28] Eva-Maria Mueller et al. “The clustering of galaxies in the completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Primordial non-Gaussianity in Fourier Space”. In: (June 2021). arXiv: 2106.13725 [astro-ph.CO].

[29] Teppei Okumura, Y. P. Jing, and Cheng Li. “Intrinsic Ellipticity Correlation of SDSS Luminous Red Galaxies and Misalignment with their Host Dark Matter Halos”. In: Astrophys. J. 694 (2009), pp. 214–221. doi: 10.1088/0004-637X/ 694/1/214. arXiv: 0809.3790 [astro-ph].

[30] Sukhdeep Singh and Rachel Mandelbaum. “Intrinsic alignments of BOSS LOWZ galaxies II. Impact of shape measurement methods”. In: Mon. Not. Roy. As- tron. Soc. 457.3 (2016), pp. 2301–2317. doi: 10.1093/mnras/stw144. arXiv: 1510.06752 [astro-ph.CO].

[31] Christopher M. Hirata et al. “Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: Luminosity and redshift scalings and implications for weak lensing surveys”. In: Mon. Not. Roy. Astron. Soc. 381 (2007), pp. 1197–1218. doi: 10 . 1111 / j . 1365 - 2966 . 2007 . 12312 . x. arXiv: astro - ph / 0701671 [astro-ph].

[32] Nora Elisa Chisari and Cora Dvorkin. “Cosmological Information in the In- trinsic Alignments of Luminous Red Galaxies”. In: JCAP 12 (2013), p. 029. doi: 10.1088/1475-7516/2013/12/029. arXiv: 1308.5972 [astro-ph.CO].

[33] Ji Yao et al. “Unveiling the Intrinsic Alignment of Galaxies with Self-Calibration and DECaLS DR3 data”. In: Astrophys. J. 904.2 (2020), p. 135. doi: 10.3847/ 1538-4357/abc175. arXiv: 2002.09826 [astro-ph.CO].

[34] Ken Osato et al. “Strong orientation dependence of surface mass density pro- files of dark haloes at large scales”. In: Mon. Not. Roy. Astron. Soc. 477.2 (2018), pp. 2141–2153. doi: 10 . 1093 / mnras / sty762. arXiv: 1712 . 00094 [astro-ph.CO].

[35] Teppei Okumura and Atsushi Taruya. “Anisotropies of galaxy ellipticity corre- lations in real and redshift space: angular dependence in linear tidal alignment model”. In: Mon. Not. Roy. Astron. Soc. 493.1 (2020), pp. L124–L128. doi: 10.1093/mnrasl/slaa024. arXiv: 1912.04118 [astro-ph.CO].

[36] Teppei Okumura et al. “Intrinsic Alignments and Splashback Radius of Dark Matter Halos from Cosmic Density and Velocity Fields”. In: (June 2017). arXiv: 1706.08860 [astro-ph.CO].

[37] Teppei Okumura, Atsushi Taruya, and Takahiro Nishimichi. “Intrinsic align- ment statistics of density and velocity fields at large scales: Formulation, modeling and baryon acoustic oscillation features”. In: Phys. Rev. D 100.10 (2019), p. 103507. doi: 10.1103/PhysRevD.100.103507. arXiv: 1907.00750 [astro-ph.CO].

[38] Teppei Okumura, Atsushi Taruya, and Takahiro Nishimichi. “Testing tidal alignment models for anisotropic correlations of halo ellipticities with N-body simulations”. In: Mon. Not. Roy. Astron. Soc. 494.1 (2020), pp. 694–702. doi: 10.1093/mnras/staa718. arXiv: 2001.05302 [astro-ph.CO].

[39] Toshiki Kurita et al. “Power spectrum of halo intrinsic alignments in sim- ulations”. In: Mon. Not. Roy. Astron. Soc. 501.1 (2021), pp. 833–852. doi: 10.1093/mnras/staa3625. arXiv: 2004.12579 [astro-ph.CO].

[40] Christopher M. Hirata and Uros Seljak. “Intrinsic alignment-lensing inter- ference as a contaminant of cosmic shear”. In: Phys. Rev. D70 (2004). [Er- ratum: Phys. Rev.D82,049901(2010)], p. 063526. doi: 10 . 1103 / PhysRevD. 82 . 049901 , 10 . 1103 / PhysRevD . 70 . 063526. arXiv: astro - ph / 0406275 [astro-ph].

[41] Fabian Schmidt, Nora Elisa Chisari, and Cora Dvorkin. “Imprint of inflation on galaxy shape correlations”. In: JCAP 1510.10 (2015), p. 032. doi: 10.1088/ 1475-7516/2015/10/032. arXiv: 1506.02671 [astro-ph.CO].

[42] Kazuyuki Akitsu et al. “Imprint of anisotropic primordial non-Gaussianity on halo intrinsic alignments in simulations”. In: Phys. Rev. D 103.8 (2021), p. 083508. doi: 10.1103/PhysRevD.103.083508. arXiv: 2007.03670 [astro-ph.CO].

[43] Kazuhiro Kogai et al. “Intrinsic galaxy alignment from angular dependent primordial non-Gaussianity”. In: JCAP 1808.08 (2018), p. 014. doi: 10.1088/ 1475-7516/2018/08/014. arXiv: 1804.06284 [astro-ph.CO].

[44] Kazuhiro Kogai et al. “Galaxy imaging surveys as spin-sensitive detector for cosmological colliders”. In: JCAP 03 (2021), p. 060. doi: 10 . 1088 / 1475 - 7516/2021/03/060. arXiv: 2009.05517 [astro-ph.CO].

[45] Planck Collaboration VI. “Planck 2018 results. VI. Cosmological parameters”. In: (2018). arXiv: 1807.06209 [astro-ph.CO].

[46] Yi Wang. “Inflation, Cosmic Perturbations and Non-Gaussianities”. In: Com- mun. Theor. Phys. 62 (2014), pp. 109–166. doi: 10.1088/0253-6102/62/1/ 19. arXiv: 1303.1523 [hep-th].

[47] David H. Lyth and Andrew R. Liddle. The primordial density perturbation: Cosmology, inflation and the origin of structure. 2009.

[48] N. Bartolo et al. “Non-Gaussianity from inflation: Theory and observations”. In: Phys. Rept. 402 (2004), pp. 103–266. doi: 10.1016/j.physrep.2004.08. 022. arXiv: astro-ph/0406398.

[49] Xingang Chen. “Primordial Non-Gaussianities from Inflation Models”. In: Adv. Astron. 2010 (2010), p. 638979. doi: 10.1155/2010/638979. arXiv: 1002.1416 [astro-ph.CO].

[50] Tomo Takahashi. “Primordial non-Gaussianity and the inflationary Universe”. In: PTEP 2014.6 (2014), 06B105. doi: 10.1093/ptep/ptu060.

[51] David H. Lyth and David Wands. “Generating the curvature perturbation without an inflaton”. In: Phys. Lett. B 524 (2002), pp. 5–14. doi: 10.1016/ S0370-2693(01)01366-1. arXiv: hep-ph/0110002.

[52] Takeo Moroi and Tomo Takahashi. “Effects of cosmological moduli fields on cosmic microwave background”. In: Phys. Lett. B 522 (2001). [Erratum: Phys.Lett.B 539, 303–303 (2002)], pp. 215–221. doi: 10.1016/S0370-2693(01)01295-3. arXiv: hep-ph/0110096.

[53] Francis Bernardeau and Jean-Philippe Uzan. “NonGaussianity in multifield inflation”. In: Phys. Rev. D 66 (2002), p. 103506. doi: 10.1103/PhysRevD. 66.103506. arXiv: hep-ph/0207295.

[54] Christian T. Byrnes and David Wands. “Curvature and isocurvature pertur- bations from two-field inflation in a slow-roll expansion”. In: Phys. Rev. D 74 (2006), p. 043529. doi: 10 . 1103 / PhysRevD. 74 . 043529. arXiv: astro- ph/0605679.

[55] Paolo Creminelli and Matias Zaldarriaga. “Single field consistency relation for the 3-point function”. In: JCAP 10 (2004), p. 006. doi: 10.1088/1475- 7516/2004/10/006. arXiv: astro-ph/0407059.

[56] Eva Silverstein and David Tong. “Scalar speed limits and cosmology: Ac- celeration from D-cceleration”. In: Phys. Rev. D 70 (2004), p. 103505. doi: 10.1103/PhysRevD.70.103505. arXiv: hep-th/0310221.

[57] Pieter Daniel Meerburg, Jan Pieter van der Schaar, and Pier Stefano Corasan- iti. “Signatures of Initial State Modifications on Bispectrum Statistics”. In: JCAP 0905 (2009), p. 018. doi: 10.1088/1475- 7516/2009/05/018. arXiv: 0901.4044 [hep-th].

[58] Y. Akrami et al. “Planck 2018 results. IX. Constraints on primordial non- Gaussianity”. In: (May 2019). arXiv: 1905.05697 [astro-ph.CO].

[59] Ashley J. Ross et al. “The Clustering of Galaxies in SDSS-III DR9 Baryon Os- cillation Spectroscopic Survey: Constraints on Primordial Non-Gaussianity”. In: Mon. Not. Roy. Astron. Soc. 428 (2013), pp. 1116–1127. doi: 10.1093/ mnras/sts094. arXiv: 1208.1491 [astro-ph.CO].

[60] Xingang Chen and Yi Wang. “Quasi-Single Field Inflation and Non-Gaussianities”. In: JCAP 1004 (2010), p. 027. doi: 10.1088/1475-7516/2010/04/027. arXiv: 0911.3380 [hep-th].

[61] Hayden Lee, Daniel Baumann, and Guilherme L. Pimentel. “Non-Gaussianity as a Particle Detector”. In: JHEP 12 (2016), p. 040. doi: 10.1007/JHEP12(2016) 040. arXiv: 1607.03735 [hep-th].

[62] Archisman Ghosh et al. “Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation”. In: JHEP 07 (2014), p. 011. doi: 10.1007/ JHEP07(2014)011. arXiv: 1401.1426 [hep-th].

[63] Nima Arkani-Hamed et al. “The Cosmological Bootstrap: Inflationary Cor- relators from Symmetries and Singularities”. In: (2018). arXiv: 1811.00024 [hep-th].

[64] Rakibur Rahman and Massimo Taronna. “From Higher Spins to Strings: A Primer”. In: (Dec. 2015). arXiv: 1512.07932 [hep-th].

[65] Xian O. Camanho et al. “Causality Constraints on Corrections to the Gravi- ton Three-Point Coupling”. In: JHEP 02 (2016), p. 020. doi: 10 . 1007 / JHEP02(2016)020. arXiv: 1407.5597 [hep-th].

[66] Clifford Cheung et al. “The Effective Field Theory of Inflation”. In: JHEP 03 (2008), p. 014. doi: 10.1088/1126- 6708/2008/03/014. arXiv: 0709.0293 [hep-th].

[67] Valentin Assassi et al. “Effective theory of large-scale structure with primordial non-Gaussianity”. In: JCAP 1511 (2015), p. 024. doi: 10.1088/1475-7516/ 2015/11/024. arXiv: 1505.06668 [astro-ph.CO].

[68] Valentin Assassi, Daniel Baumann, and Fabian Schmidt. “Galaxy Bias and Primordial Non-Gaussianity”. In: JCAP 1512.12 (2015), p. 043. doi: 10.1088/ 1475-7516/2015/12/043. arXiv: 1510.03723 [astro-ph.CO].

[69] Soubhik Kumar and Raman Sundrum. “Heavy-Lifting of Gauge Theories By Cosmic Inflation”. In: JHEP 05 (2018), p. 011. doi: 10.1007/JHEP05(2018) 011. arXiv: 1711.03988 [hep-ph].

[70] Daniel Baumann and Daniel Green. “Signatures of Supersymmetry from the Early Universe”. In: Phys. Rev. D 85 (2012), p. 103520. doi: 10 . 1103 / PhysRevD.85.103520. arXiv: 1109.0292 [hep-th].

[71] Soubhik Kumar and Raman Sundrum. “Cosmological Collider Physics and the Curvaton”. In: JHEP 04 (2020), p. 077. doi: 10.1007/JHEP04(2020)077. arXiv: 1908.11378 [hep-ph].

[72] Soubhik Kumar and Raman Sundrum. “Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities”. In: JHEP 04 (2019), p. 120. doi: 10.1007/JHEP04(2019)120. arXiv: 1811.11200 [hep-ph].

[73] Lian-Tao Wang and Zhong-Zhi Xianyu. “In Search of Large Signals at the Cos- mological Collider”. In: JHEP 02 (2020), p. 044. doi: 10.1007/JHEP02(2020) 044. arXiv: 1910.12876 [hep-ph].

[74] Lian-Tao Wang and Zhong-Zhi Xianyu. “Gauge Boson Signals at the Cosmo- logical Collider”. In: (Apr. 2020). arXiv: 2004.02887 [hep-ph].

[75] Xingang Chen, Yi Wang, and Zhong-Zhi Xianyu. “Neutrino Signatures in Primordial Non-Gaussianities”. In: JHEP 09 (2018), p. 022. doi: 10.1007/ JHEP09(2018)022. arXiv: 1805.02656 [hep-ph].

[76] Anson Hook, Junwu Huang, and Davide Racco. “Searches for other vacua. Part II. A new Higgstory at the cosmological collider”. In: JHEP 01 (2020), p. 105. doi: 10.1007/JHEP01(2020)105. arXiv: 1907.10624 [hep-ph].

[77] Atsushi Higuchi. “Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time”. In: Nucl. Phys. B282 (1987), pp. 397–436. doi: 10.1016/0550- 3213(87)90691-2.

[78] Alex Kehagias and Antonio Riotto. “On the Inflationary Perturbations of Mas- sive Higher-Spin Fields”. In: JCAP 1707.07 (2017), p. 046. doi: 10 . 1088 / 1475-7516/2017/07/046. arXiv: 1705.05834 [hep-th].

[79] Lorenzo Bordin et al. “Light Particles with Spin in Inflation”. In: JCAP 1810.10 (2018), p. 013. doi: 10 . 1088 / 1475 - 7516 / 2018 / 10 / 013. arXiv: 1806.10587 [hep-th].

[80] Gabriele Franciolini et al. “Detecting higher spin fields through statistical anisotropy in the CMB bispectrum”. In: Phys. Rev. D98.4 (2018), p. 043533. doi: 10.1103/PhysRevD.98.043533. arXiv: 1803.03814 [astro-ph.CO].

[81] Maresuke Shiraishi et al. “Signatures of anisotropic sources in the squeezed- limit bispectrum of the cosmic microwave background”. In: JCAP 1305 (2013), p. 002. doi: 10.1088/1475-7516/2013/05/002. arXiv: 1302.3056 [astro-ph.CO].

[82] Azadeh Moradinezhad Dizgah et al. “Constraints on long-lived, higher-spin particles from galaxy bispectrum”. In: Phys. Rev. D98.6 (2018), p. 063520. doi: 10.1103/PhysRevD.98.063520. arXiv: 1805.10247 [astro-ph.CO].

[83] Azadeh Moradinezhad Dizgah and Cora Dvorkin. “Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation”. In: JCAP 1801.01 (2018), p. 010. doi: 10.1088/1475-7516/2018/01/010. arXiv: 1708.06473 [astro-ph.CO].

[84] Zachary Slepian and Daniel J. Eisenstein. “A practical computational method for the anisotropic redshift-space three-point correlation function”. In: Mon. Not. Roy. Astron. Soc. 478.2 (2018), pp. 1468–1483. doi: 10. 1093 / mnras/ sty1063. arXiv: 1709.10150 [astro-ph.CO].

[85] Naonori S. Sugiyama et al. “A complete FFT-based decomposition formal- ism for the redshift-space bispectrum”. In: Mon. Not. Roy. Astron. Soc. 484.1 (2019), pp. 364–384. doi: 10 . 1093 / mnras / sty3249. arXiv: 1803 . 02132 [astro-ph.CO].

[86] Yasushi Suto and Misao Sasaki. “Quasinonlinear theory of cosmological self- gravitating systems”. In: Phys. Rev. Lett. 66 (3 1991), pp. 264–267. doi: 10. 1103/PhysRevLett.66.264. url: https://link.aps.org/doi/10.1103/ PhysRevLett.66.264.

[87] Nobuyoshi Makino, Misao Sasaki, and Yasushi Suto. “Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields”. In: Phys. Rev. D 46 (2 1992), pp. 585–602. doi: 10.1103/PhysRevD.46.585. url: https://link.aps.org/doi/10.1103/ PhysRevD.46.585.

[88] Enrico Pajer and Matias Zaldarriaga. “On the Renormalization of the Effective Field Theory of Large Scale Structures”. In: JCAP 1308 (2013), p. 037. doi: 10.1088/1475-7516/2013/08/037. arXiv: 1301.7182 [astro-ph.CO].

[89] Scott Dodelson and Fabian Schmidt. Modern Cosmology Second Edition. Am- sterdam: Academic Press, 2021. isbn: 978-0-12-815948-4.

[90] Pablo Fosalba and Enrique Gaztanaga. “Cosmological perturbation theory and the spherical collapse model: Part 1. Gaussian initial conditions”. In: Mon. Not. Roy. Astron. Soc. 301 (1998), pp. 503–523. doi: 10 . 1046 / j . 1365 - 8711.1998.02033.x. arXiv: astro-ph/9712095.

[91] F. Bernardeau et al. “Large scale structure of the universe and cosmological perturbation theory”. In: Phys. Rept. 367 (2002), pp. 1–248. doi: 10.1016/ S0370-1573(02)00135-7. arXiv: astro-ph/0112551 [astro-ph].

[92] Bhuvnesh Jain and Edmund Bertschinger. “Second order power spectrum and nonlinear evolution at high redshift”. In: Astrophys. J. 431 (1994), p. 495. doi: 10.1086/174502. arXiv: astro-ph/9311070.

[93] Ryuichi Takahashi. “Third Order Density Perturbation and One-loop Power Spectrum in a Dark Energy Dominated Universe”. In: Prog. Theor. Phys. 120 (2008), pp. 549–559. doi: 10 . 1143 / PTP . 120 . 549. arXiv: 0806 . 1437 [astro-ph].

[94] Diego Blas, Mathias Garny, and Thomas Konstandin. “Cosmological pertur- bation theory at three-loop order”. In: JCAP 01 (2014), p. 010. doi: 10.1088/ 1475-7516/2014/01/010. arXiv: 1309.3308 [astro-ph.CO].

[95] Asantha Cooray and Ravi K. Sheth. “Halo Models of Large Scale Structure”. In: Phys. Rept. 372 (2002), pp. 1–129. doi: 10.1016/S0370-1573(02)00276- 4. arXiv: astro-ph/0206508.

[96] Zvonimir Vlah, Nora Elisa Chisari, and Fabian Schmidt. “An EFT description of galaxy intrinsic alignments”. In: JCAP 2001.01 (2020), p. 025. doi: 10 . 1088/1475-7516/2020/01/025. arXiv: 1910.08085 [astro-ph.CO].

[97] Patrick McDonald. “Clustering of dark matter tracers: Renormalizing the bias parameters”. In: Phys. Rev. D 74 (2006). [Erratum: Phys.Rev.D 74, 129901 (2006)], p. 103512. doi: 10.1103/PhysRevD.74.129901. arXiv: astro- ph/ 0609413.

[98] Fabian Schmidt, Donghui Jeong, and Vincent Desjacques. “Peak-Background Split, Renormalization, and Galaxy Clustering”. In: Phys. Rev. D88.2 (2013), p. 023515. doi: 10.1103/PhysRevD.88.023515. arXiv: 1212.0868 [astro-ph.CO].

[99] Shuichiro Yokoyama and Jiro Soda. “Primordial statistical anisotropy gener- ated at the end of inflation”. In: JCAP 0808 (2008), p. 005. doi: 10.1088/ 1475-7516/2008/08/005. arXiv: 0805.4265 [astro-ph].

[100] Fabian Schmidt and Donghui Jeong. “Cosmic Rulers”. In: Phys. Rev. D86 (2012), p. 083527. doi: 10 . 1103 / PhysRevD. 86 . 083527. arXiv: 1204 . 3625 [astro-ph.CO].

[101] Pierre Fleury, Julien Larena, and Jean-Philippe Uzan. “Weak lensing distor- tions beyond shear”. In: Phys. Rev. D 99.2 (2019), p. 023526. doi: 10.1103/ PhysRevD.99.023526. arXiv: 1809.03924 [astro-ph.CO].

[102] Slava G. Turyshev and Viktor T. Toth. “Multipole decomposition of gravita- tional lensing”. In: (July 2021). arXiv: 2107.13126 [gr-qc].

[103] Marc Kamionkowski et al. “Theory and statistics of weak lensing from large scale mass inhomogeneities”. In: Mon. Not. Roy. Astron. Soc. 301 (1998), p. 1064. doi: 10 . 1046 / j. 1365 - 8711 . 1998 . 02054 . x. arXiv: astro- ph/ 9712030.

[104] Marc Kamionkowski and Ely D. Kovetz. “The Quest for B Modes from In- flationary Gravitational Waves”. In: Ann. Rev. Astron. Astrophys. 54 (2016), pp. 227–269. doi: 10.1146/annurev- astro- 081915- 023433. arXiv: 1510. 06042 [astro-ph.CO].

[105] David M. Goldberg and David J. Bacon. “Galaxy-galaxy flexion: Weak lensing to second order”. In: Astrophys. J. 619 (2005), pp. 741–748. doi: 10.1086/ 426782. arXiv: astro-ph/0406376 [astro-ph].

[106] Yuki Okura, Keiichi Umetsu, and Toshifumi Futamase. “A New Measure for Weak Lensing Flexion”. In: Astrophys. J. 660 (2007), pp. 995–1002. doi: 10. 1086/513135. arXiv: astro-ph/0607288 [astro-ph].

[107] J. N. Goldberg et al. “Spin-s Spherical Harmonics and ð”. In: Journal of Math- ematical Physics 8.11 (1967), pp. 2155–2161. doi: 10.1063/1.1705135. url: https://doi.org/10.1063/1.1705135.

[108] Steven Weinberg. Cosmology. 2008. isbn: 978-0-19-852682-7.

[109] Matias Zaldarriaga. “Nature of the E B decomposition of CMB polarization”. In: Phys. Rev. D 64 (2001), p. 103001. doi: 10.1103/PhysRevD.64.103001. arXiv: astro-ph/0106174.

[110] Fabian Schmidt, Enrico Pajer, and Matias Zaldarriaga. “Large-Scale Struc- ture and Gravitational Waves III: Tidal Effects”. In: Phys. Rev. D 89.8 (2014), p. 083507. doi: 10.1103/PhysRevD.89.083507. arXiv: 1312.5616 [astro-ph.CO].

[111] Matteo Biagetti and Giorgio Orlando. “Primordial Gravitational Waves from Galaxy Intrinsic Alignments”. In: JCAP 07 (2020), p. 005. doi: 10 . 1088 / 1475-7516/2020/07/005. arXiv: 2001.05930 [astro-ph.CO].

[112] J. J. Dalcanton, D. N. Spergel, and F J Summers. “The formation of disk galaxies”. In: Astrophys. J. 482 (1997), pp. 659–676. doi: 10.1086/304182. arXiv: astro-ph/9611226.

[113] Vincent Desjacques, Donghui Jeong, and Fabian Schmidt. “Large-Scale Galaxy Bias”. In: Phys. Rept. 733 (2018), pp. 1–193. doi: 10.1016/j.physrep.2017. 12.002. arXiv: 1611.09787 [astro-ph.CO].

[114] Mehrdad Mirbabayi, Fabian Schmidt, and Matias Zaldarriaga. “Biased Tracers and Time Evolution”. In: JCAP 1507.07 (2015), p. 030. doi: 10.1088/1475- 7516/2015/07/030. arXiv: 1412.5169 [astro-ph.CO].

[115] Ananth Tenneti et al. “Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics”. In: Mon. Not. Roy. Astron. Soc. 448.4 (2015), pp. 3522–3544. doi: 10.1093/mnras/stv272. arXiv: 1409.7297 [astro-ph.CO].

[116] Ananth Tenneti et al. “Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations”. In: Mon. Not. Roy. Astron. Soc. 453.1 (2015), pp. 469–482. doi: 10.1093/mnras/stv1625. arXiv: 1505. 03124 [astro-ph.CO].

[117] Nora Elisa Chisari et al. “Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN”. In: Mon. Not. Roy. Astron. Soc. 461.3 (2016), pp. 2702–2721. doi: 10 . 1093 / mnras/ stw1409. arXiv: 1602 . 08373 [astro-ph.CO].

[118] Jonathan Blazek et al. “Beyond linear galaxy alignments”. In: Phys. Rev. D 100.10 (2019), p. 103506. doi: 10.1103/PhysRevD.100.103506. arXiv: 1708. 09247 [astro-ph.CO].

[119] Sukhdeep Singh, Rachel Mandelbaum, and Surhud More. “Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies”. In: Mon. Not. Roy. Astron. Soc. 450.2 (2015), pp. 2195–2216. doi: 10.1093/mnras/stv778. arXiv: 1411.1755 [astro-ph.CO].

[120] Raul Angulo et al. “On the Statistics of Biased Tracers in the Effective Field Theory of Large Scale Structures”. In: JCAP 09 (2015), p. 029. doi: 10.1088/ 1475-7516/2015/9/029. arXiv: 1503.08826 [astro-ph.CO].

[121] Phillip James Edwin Peebles. The Large-Scale Structure of the Universe. Prince- ton University Press, 1980.

[122] Ali Akbar Abolhasani, Mehrdad Mirbabayi, and Enrico Pajer. “Systematic Renormalization of the Effective Theory of Large Scale Structure”. In: JCAP 05 (2016), p. 063. doi: 10.1088/1475-7516/2016/05/063. arXiv: 1509.07886 [hep-th].

[123] Simon Foreman, Hideki Perrier, and Leonardo Senatore. “Precision Compar- ison of the Power Spectrum in the EFTofLSS with Simulations”. In: JCAP 1605.05 (2016), p. 027. doi: 10 . 1088 / 1475 - 7516 / 2016 / 05 / 027. arXiv: 1507.05326 [astro-ph.CO].

[124] Simon Foreman and Leonardo Senatore. “The EFT of Large Scale Structures at All Redshifts: Analytical Predictions for Lensing”. In: JCAP 04 (2016), p. 033. doi: 10.1088/1475-7516/2016/04/033. arXiv: 1503.01775 [astro-ph.CO].

[125] Yannick Mellier. “Probing the universe with weak lensing”. In: Ann. Rev. As- tron. Astrophys. 37 (1999), pp. 127–189. doi: 10.1146/annurev.astro.37. 1.127. arXiv: astro-ph/9812172 [astro-ph].

[126] Elisabeth Krause and Christopher M. Hirata. “Weak lensing power spectra for precision cosmology: Multiple-deflection, reduced shear and lensing bias corrections”. In: Astron. Astrophys. 523 (2010), A28. doi: 10 . 1051 / 0004 - 6361/200913524. arXiv: 0910.3786 [astro-ph.CO].

[127] Massimo Viola, Peter Melchior, and Matthias Bartelmann. “Shear-flexion cross- talk in weak-lensing measurements”. In: Mon. Not. Roy. Astron. Soc. 419 (2012), p. 2215. doi: 10.1111/j.1365- 2966.2011.19872.x. arXiv: 1107. 3920 [astro-ph.CO].

[128] C. Chang et al. “The Effective Number Density of Galaxies for Weak Lens- ing Measurements in the LSST Project”. In: Mon. Not. Roy. Astron. Soc. 434 (2013), p. 2121. doi: 10.1093/mnras/stt1156. arXiv: 1305.0793 [astro-ph.CO].

[129] Nora Elisa Chisari et al. “Multitracing Anisotropic Non-Gaussianity with Galaxy Shapes”. In: Phys. Rev. D94.12 (2016), p. 123507. doi: 10.1103/PhysRevD. 94.123507. arXiv: 1607.05232 [astro-ph.CO].

[130] Max Tegmark, Andy Taylor, and Alan Heavens. “Karhunen-Loeve eigenvalue problems in cosmology: How should we tackle large data sets?” In: Astrophys. J. 480 (1997), p. 22. doi: 10.1086/303939. arXiv: astro-ph/9603021.

[131] Douglas Scott et al. “The information content of cosmic microwave background anisotropies”. In: JCAP 1606.06 (2016), p. 046. doi: 10.1088/1475- 7516/ 2016/06/046. arXiv: 1603.03550 [astro-ph.CO].

[132] Licia Verde. “Statistical methods in cosmology”. In: Lect. Notes Phys. 800 (2010), pp. 147–177. doi: 10.1007/978-3-642-10598-2_4. arXiv: 0911.3105 [astro-ph.CO].

[133] Sabino Matarrese and Licia Verde. “The effect of primordial non-Gaussianity on halo bias”. In: Astrophys. J. 677 (2008), pp. L77–L80. doi: 10 . 1086 / 587840. arXiv: 0801.4826 [astro-ph].

[134] Fabian Schmidt and Marc Kamionkowski. “Halo Clustering with Non-Local Non-Gaussianity”. In: Phys. Rev. D82 (2010), p. 103002. doi: 10 . 1103 / PhysRevD.82.103002. arXiv: 1008.0638 [astro-ph.CO].

[135] Takahiko Matsubara. “Deriving an Accurate Formula of Scale-dependent Bias with Primordial Non-Gaussianity: An Application of the Integrated Perturba- tion Theory”. In: Phys. Rev. D86 (2012), p. 063518. doi: 10.1103/PhysRevD. 86.063518. arXiv: 1206.0562 [astro-ph.CO].

[136] Jonathan Blazek, Zvonimir Vlah, and Uroš Seljak. “Tidal alignment of galax- ies”. In: JCAP 1508.08 (2015), p. 015. doi: 10.1088/1475- 7516/2015/08/ 015. arXiv: 1504.02510 [astro-ph.CO].

[137] Planck Collaboration XIII. “Planck 2015 results. XIII. Cosmological parame- ters”. In: A&A 594 (2016), A13. doi: 10.1051/0004-6361/201525830. arXiv: 1502.01589 [astro-ph.CO].

[138] David Alonso et al. “Ultra large-scale cosmology in next-generation experi- ments with single tracers”. In: Astrophys. J. 814.2 (2015), p. 145. doi: 10 . 1088/0004-637X/814/2/145. arXiv: 1505.07596 [astro-ph.CO].

[139] Azadeh Moradinezhad Dizgah et al. “Galaxy Bispectrum from Massive Spin- ning Particles”. In: JCAP 1805.05 (2018), p. 013. doi: 10.1088/1475-7516/ 2018/05/013. arXiv: 1801.07265 [astro-ph.CO].

[140] Jérôme Gleyzes et al. “Biasing and the search for primordial non-Gaussianity beyond the local type”. In: JCAP 1704.04 (2017), p. 002. doi: 10.1088/1475- 7516/2017/04/002. arXiv: 1612.06366 [astro-ph.CO].

[141] D. Nelson Limber. “The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II”. In: Astrophys. J. 119 (1954), p. 655. doi: 10.1086/145870.

[142] Marilena LoVerde and Niayesh Afshordi. “Extended Limber Approximation”. In: Phys. Rev. D78 (2008), p. 123506. doi: 10.1103/PhysRevD.78.123506. arXiv: 0809.5112 [astro-ph].

[143] Emiliano Sefusatti et al. “Effects and Detectability of Quasi-Single Field In- flation in the Large-Scale Structure and Cosmic Microwave Background”. In: JCAP 1208 (2012), p. 033. doi: 10.1088/1475- 7516/2012/08/033. arXiv: 1204.6318 [astro-ph.CO].

[144] N. Bartolo et al. “An Estimator for statistical anisotropy from the CMB bispec- trum”. In: JCAP 1201 (2012), p. 029. doi: 10.1088/1475-7516/2012/01/029. arXiv: 1107.4304 [astro-ph.CO].

[145] Jaiseung Kim and Eiichiro Komatsu. “Limits on anisotropic inflation from the Planck data”. In: Phys. Rev. D88 (2013), p. 101301. doi: 10.1103/PhysRevD. 88.101301. arXiv: 1310.1605 [astro-ph.CO].

[146] Maresuke Shiraishi, Naonori S. Sugiyama, and Teppei Okumura. “Polypo- lar spherical harmonic decomposition of galaxy correlators in redshift space: Toward testing cosmic rotational symmetry”. In: Phys. Rev. D95.6 (2017), p. 063508. doi: 10.1103/PhysRevD.95.063508. arXiv: 1612.02645 [astro-ph.CO].

[147] Naonori S. Sugiyama, Maresuke Shiraishi, and Teppei Okumura. “Limits on statistical anisotropy from BOSS DR12 galaxies using bipolar spherical har- monics”. In: Mon. Not. Roy. Astron. Soc. 473.2 (2018), pp. 2737–2752. doi: 10.1093/mnras/stx2333. arXiv: 1704.02868 [astro-ph.CO].

[148] Nicola Bartolo et al. “Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra”. In: Phys. Rev. D97.2 (2018), p. 023503. doi: 10.1103/PhysRevD.97.023503. arXiv: 1709.05695 [astro-ph.CO].

[149] Gabriele Franciolini, Alex Kehagias, and Antonio Riotto. “Imprints of Spin- ning Particles on Primordial Cosmological Perturbations”. In: JCAP 1802.02 (2018), p. 023. doi: 10.1088/1475-7516/2018/02/023. arXiv: 1712.06626 [hep-th].

[150] Kazuyuki Akitsu, Masahiro Takada, and Yin Li. “Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey”. In: Phys. Rev. D95.8 (2017), p. 083522. doi: 10.1103/PhysRevD.95.083522. arXiv: 1611.04723 [astro-ph.CO].

[151] Masahiro Takada and Wayne Hu. “Power Spectrum Super-Sample Covari- ance”. In: Phys. Rev. D87.12 (2013), p. 123504. doi: 10.1103/PhysRevD.87. 123504. arXiv: 1302.6994 [astro-ph.CO].

[152] Asantha Cooray and Wayne Hu. “Second order corrections to weak lensing by large scale structure”. In: Astrophys. J. 574 (2002), p. 19. doi: 10.1086/ 340892. arXiv: astro-ph/0202411.

[153] H. Ehrentraut and W. Muschik. “On Symmetric irreducible tensors in d- dimensions”. In: ARI - An International Journal for Physical and Engineering Sciences 51.2 (1998), pp. 149–159. issn: 1434-565X. doi: 10.1007/s007770050048. url: https://doi.org/10.1007/s007770050048.

[154] Andreas S. Schmidt et al. “Cosmological N-Body Simulations with a Large- Scale Tidal Field”. In: Mon. Not. Roy. Astron. Soc. 479.1 (2018), pp. 162–170. doi: 10.1093/mnras/sty1430. arXiv: 1803.03274 [astro-ph.CO].

[155] Shogo Masaki, Takahiro Nishimichi, and Masahiro Takada. “Anisotropic sep- arate universe simulations”. In: Mon. Not. Roy. Astron. Soc. 496.1 (2020), pp. 483–496. doi: 10.1093/mnras/staa1579. arXiv: 2003.10052 [astro-ph.CO].

[156] Kazuyuki Akitsu, Yin Li, and Teppei Okumura. “Cosmological simulation in tides: power spectrum and halo shape responses, and shape assembly bias”. In: (Nov. 2020). arXiv: 2011.06584 [astro-ph.CO].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る