リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「熱的/化学的に堅牢性な化学センサに関する基礎的研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

熱的/化学的に堅牢性な化学センサに関する基礎的研究

李, 文君 WENJUN, LI リ, ウェンジュン 九州大学

2022.03.23

概要

Although a large number of polymer sensors and metal oxide sensors have been commercialized and are extensively utilized in various fields nowadays, the upcoming era of IoT put forward higher technical demands on them. Long-term stability and suitable design of sensor device are key issues that determine the performance of the final sensor in practical application. In this thesis, we demonstrate that based on the understanding of chemical reaction on sensing material’s surface, the long-term stability and selectivity of target molecule can be achieved.

 The chemical reaction on PEG-carbon black nanocomposite sensor for degradation mechanism was well investigated by using a dual-use device with capable check for FT-IR and sensing performance. The results were shown in chapter Ⅲ. By comparing the sensing properties and the IR spectroscopy on a same device, it revealed that the oxidation induced consumption of PEG was a key factor for the degradation of sensing performance. Depending on the mechanism, an anti-oxidizing agent (i.e. ascorbic acid) was incorporated into the PEG-CB nanocomposite sensor to inhibit the PEG oxidation and successfully proved its long-term sensing stability in ambient air for 30 days. Because the oxidation is a typical problem for polymer materials, the proposed method was feasible to various polymer-carbon nanocomposite sensors to promote their long-term stability. After that, in chapter Ⅳ, we investigated the material dependence of metal oxides (i.e. ZnO, ZrO2, TiO2) on the molecular adsorption behaviors of volatile molecules. Spectroscopic and spectrometric analyses revealed that the Lewis acidity of meal cations give a strong impact on the bonding strength of molecules but not on the adsorption amount. Since the performance of catalyst/molecular sensor/molecular filter is essentially determined via the adsorption/desorption behaviors of molecules on material surface, the proposed nanowire array structure based analytical platform and the obtained implications in this study offer a foundation to design the performance of these nanoscale metal oxides based applications. In chapter Ⅴ, we found in-situ fabrication of hydrothermally grown ZnO bridging nanosensors can substantially suppress the unintentional variations of electrical resistances between electrodes and significantly enhance the sensing responses for NO2 with the smaller standard deviation and the lower limitation of detection compare with conventional shape edge seed layers. In chapter Ⅵ, we fabricated a highly active metal oxide surface with sol-gel processed ZrO2 coated on ZnO nanowire array. This surface can achieve selective ketone sensing in mixture, because aldehyde i.e. nonanal is easily oxidated by activated oxygen on sol-gel ZrO2 surface while ketone i.e. 2-nonanone with higher resistivity for oxidation remains on the surface. By combine this ZrO2 coated ZnO nanowire array as molecular selector with PEG-carbon black sensor, selective ketone sensing can be obtained. At the same time, this ZrO2 surface exhibited excellent thermally robust for keep its selectivity at 400 oC for near 3×107 years.

 However, there are still many obstacles in the practical application of metal oxide gas sensors. The effect of ambient environmental factors like temperature, humidity and ambient light cannot be ignored. In particular, the application of biomarker detection in human respiration is not accurate enough, because the large amount of moisture contained in the respiratory gas can disturb the sensing results. Integrating multiple detection devices based on different principles should be a possible way to improve recognition capabilities. In order to realize the next generation of innovation in the area of chemical sensors, the exploration of high-quality materials and new integration methods should be further explored.

参考文献

CHAPTER I

(1) Kelly F J, Fussell J C. Air pollution and public health: emerging hazards and improved understanding of risk[J]. Environmental geochemistry and health, 2015, 37(4): 631-649.

(2) Pope III C A, Dockery D W. Health effects of fine particulate air pollution: lines that connect[J]. Journal of the air & waste management association, 2006, 56(6): 709-742.

(3) Farmer S A, Nelin T D, Falvo M J, et al. Ambient and household air pollution: complex triggers of disease[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2014, 307(4): H467-H476.

(4) ToxTown, US National Library of Medicine, May 31, 2017.

(5) http://www.yole.fr/2018_press_releases.aspx

(6) Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x[J]. Journal of the Chemical Society, Chemical Communications, 1977 (16): 578-580.

(7) Ji H-S, McNiven S, Yano K, Ikebukuro K, Bornscheuer UT, Schmid RD, Karube I. Highly sensitive trilayer piezoelectric odor sensor. Anal Chim Acta 1999;387:39–45.

(8) Rösler S, Lucklum R, Borngra¨ber R, Hartmann J, HauptmannP. Sensor system for the detection of organic pollutants in water by thickness shear mode resonators. Sensors Actuators B 1998;48:415–24.

(9) Doleman BJ, Lewis NS. Comparison of odor detection thresholds and odor discriminabilities of a conducting polymer composite electronic nose vs mamallian olfaction. Sensors Actuators B 2001;72:41–50.

(10) Liu ZH, Wen ML, Yao Y, Xiong J. Plastic pethidine hydrochloride membrane sensor and its pharmaceutical applications. Sensors Actuators B 2001;77:219–23.

(11) B. Adhikari, S. Majumdar, Polymers in sensor applications, Prog. Polym. Sci. 29(2004) 699–766.

(12) Harsányi, Gábor. "Polymer films in sensor applications: a review of present uses and future possibilities." Sensor Review (2000).]

(13) Heiland G. Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen[J]. Zeitschrift für Physik, 1954, 138(3-4): 459-464.

(14) Bielański A, Dereń J, Haber J. Electric conductivity and catalytic activity of semiconducting oxide catalysts[J]. Nature, 1957, 179(4561): 668-669.

(15) Seiyama T, Kato A, Fujiishi K, et al. A new detector for gaseous components using semiconductive thin films[J]. Analytical Chemistry, 1962, 34(11): 1502- 1503.

(16) N. Taguchi, U.S. Patent 3,631,436 (1971).

(17) www.figaro.co.jp/en/

(18) www.fisinc.co.jp/en/

(19) sgx.cdistore.com

(20) www.ustsensor.com

(21) www.citytech.com

(22) www.appliedsensortech.com

(23) www.newcosmos-global.com

(24) Gali, P.; Sapkota, G.; Syllaios, A. J.; Littler, C.; Philipose, U. Nanotechnology 2013, 24, 225704.

(25) Liu, X.; Chang, Z.; Luo, L.; Lei, X.; Liu, J.; Sun, X. J. Mater. Chem. 2012, 22, 7232.

(26) Wang, C.; Cui, X.; Liu, J.; Zhou, X.; Cheng, X.; Sun, P.; Hu, X.; Li, X.; Zheng, J.; Lu, G. ACS Sens. 2016, 1, 131-136.

(27) Dou, Z.; Cao, C.; Chen, Y.; Song, W. Chem. Commun. 2014, 50, 14889.

(28) Zhang, F.; Zhu, A.; Luo, Y.; Tian, Y.; Yang, J.; Qin, Y. J. Phys. Chem. C 2010, 114, 19214-19219.

(29) Zhou, X.; Li, X.; Sun, H.; Sun, P.; Liang, X.; Liu, F.; Hu, X.; Lu, G. ACS Appl. Mater. Interfaces 2015, 7, 15414-15421.

(30) Zhou X.; Feng, W.; Wang, C.; Hu, X.; Li, X.; Sun, P.; Shimanoe, K.; Yamazoe, N.; Lu, G. J. Mater. Chem. A 2014, 2, 17683-17690.

(31) Yang, X.; Zhang, S.; Yu, Q.; Sun, P.; Liu, F.; Lu, H.; Yan, X.; Zhou, X.; Liang, X.; Gao, Y.; Lu, G. Sens. Actuators B Chem. 2018, 270, 538-544.

(32) Yang, X.; Gao, H.; Zhao, L.; Wang, T.; Sun, P.; Liu, F.; Lu, G. Sens. Actuators B Chem. 2018, 266, 302-310.

(33) Hesse J, Gardner J W, Göpel W. Sensors for automotive technology[M]. Weinheim: Wiley-VCH Verlag, 2003.

(34) T.C. Pearce, S.S. Schiffman, H. Troy Nagle, J.W. Gardner. Handbook of machine olfaction: electronic nose technology[M]. John Wiley & Sons, 2006.

(35) Rüffer, D.; Hoehne, F.; Bühler, J. Sensors 2018, 18, 1052.

CHAPTER II

(1) Pavia, D. L.; Lampman, G. M.; Kritz, G. S.; Engel, R. G. Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole., 2006.

(2) Hites, R. A. Anal. Chem. 2016, 88, 6955-6961.

(3) Abraham, M. H.; Poole, C. F.; Poole, S. K. J. Chromatogr. A 1999, 842, 79-114.

(4) https://www.chromedia.org/dchro/gfx/ZapdlvkHC.jpeg

(5) McWILLIAM, I. G.; DEWAR, R. A. Nature 1958, 181, 760.

(6) Grob, R. L.; Barry, E. F. Modern Practice of Gas Chromatography (4th Ed.). John Wiley & Sons., 2004.

(7) De Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; John Wiley & Sons: Chichester, 2011.

(8) Gross, J. H. Mass Spectrometry: A Textbook, 2nd ed.; Springer: Heidelberg, Germany, 2011.

(9) Cooper J B, Wise K L, Welch W T, et al. Determination of weight percent oxygen in commercial gasoline: a comparison between FT-Raman, FT-IR, and dispersive near-IR spectroscopies[J]. Applied spectroscopy, 1996, 50(7): 917-921.

(10) Kim Y, Rose C A, Liu Y, et al. Ft‐IR and near‐infared FT‐Raman studies of the secondary structure of insulinotropin in the solid state: α‐helix to β‐sheet conversion induced by phenol and/or by high shear force[J]. Journal of pharmaceutical sciences, 1994, 83(8): 1175-1180.

(11) Langkilde F W, Svantesson A. Identification of celluloses with Fourier-transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry[J]. Journal of pharmaceutical and biomedical analysis, 1995, 13(4-5): 409-414.

(12) Bellamy M K, Mortensen A N, Hammaker R M, et al. Chemical mapping in the mid-and near-IR spectral regions by Hadamard transform/FT-IR spectrometry[J]. Applied spectroscopy, 1997, 51(4): 477-486.

(13) Shumin H, Ronghua Z, Xuetong Z. A Study of Near‐and Super‐Critical Fluids Using Diamond Anvil Cell and in‐Situ FT‐IR Spectroscopy[J]. Acta Geologica Sinica‐English Edition, 2000, 74(2): 412-417.

(14) Akagi, S. K.; Burling, I. R.; Mendoza, A.; Johnson, T. J.; Cameron, M.; Griffith, D. W. T.; Paton-Walsh, C.; Weise, D. R.; Reardon, J.; Yokelson, R. J. Atmos. Chem. Phys. 2014, 14, 199.

(15) Hung, H.-M.; Chen, Y.-Q.; Martin, S. T. J. Phys. Chem. A 2012, 117, 108.

(16) Perkampus H H. UV-VIS Spectroscopy and its Applications[M]. Springer Science & Business Media, 2013.

(17) Klamt A. Calculation of UV/Vis spectra in solution[J]. The Journal of Physical Chemistry, 1996, 100(9): 3349-3353.

(18) Rahman A, Yalin A P, Surla V, et al. Absolute UV and VUV emission in the 110–400 nm region from 13.56 MHz driven hollow slot microplasmas operating in open air[J]. Plasma Sources Science and Technology, 2004, 13(3): 537.

(19) Hills, A. J.; Zimmerman, P. R. Anal. Chem. 1990, 62, 1055.

(20) Kourtidis, K.; Ziomas, I.; Zerefos, C.; Achilleas, G.; Balis, D.; Tzoumaka, P. Atmos. Environ. 2000, 34, 1471.

(21) Bornhop, D. J.; Wangsgaard, J. G. J. High Resolution Chroma. 1991, 14, 344- 347.

(22) Noziere, B.; Kalberer, M.; Claeys, M.; Allan, J.; D’Anna, B.; Decesari, S.; Finessi, E.; Glasius, M.; Grgic, I.; Hamilton, J. F.; Hoffmann, T.; Iinuma, Y.; Jaoui, M.; Kahnt, A.; Kampf, C. J.; Kourtchev, I.; Maenhaut, W.; Marsden, N.; Saarikoski, S.; Schnelle-Kreis, J.; Surratt, J. D.; Szidat, S.; Szmigielski, R.; Wisthaler, A. Chem. Rev. 2015, 115, 3919-3983.

(23) Meng, Z.; Stolz, R. M.; Mendecki, L.; Mirica, K. A. Chem. Rev. 2019, 119, 478- 598.

(24) Banica, F. G. Chemical Sensors and Biosensors: Fundamentals and Applications; 2012.

(25) Sekhar, P. K.; Brosha, E. L.; Mukundan, R.; Gaezon, F. Electrochem. Soc. Interface 2010, 19, 5-40.

(26) Electrochemical sensors, biosensors and their biomedical applications[M]. Academic Press, 2011.

(27) Hahn C E W. Tutorial Review. Electrochemical analysis of clinicalblood-gases, gases and vapours[J]. Analyst, 1998, 123(6): 57R-86R.

(28) Valdés M G, González A C V, Calzón J A G, et al. Analytical nanotechnology for food analysis[J]. Microchimica Acta, 2009, 166(1): 1-19.

(29) Wong H S, White M H. A CMOS-integrated'ISFET-operational amplifier'chemical sensor employing differential sensing[J]. IEEE Transactions on Electron Devices, 1989, 36(3): 479-487.

(30) Albert K J, Lewis N S, Schauer C L, et al. Cross-reactive chemical sensor arrays[J]. Chemical reviews, 2000, 100(7): 2595-2626.

(31) Wang, T.; Yu, Q.; Zhang, S.; Kou, X.; Sun, P.; Lu, G. Nanoscale 2018, 10, 4841- 4851.

(32) Zhu, Y.; Zhao, Y.; Ma, J.; Cheng, X.; Xie, J.; Xu, P.; Liu, H.; Liu, H.; Zhang, H.; Wu, M.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y.; Zhao, D. J. Am. Chem. Soc. 2017, 139, 10365-10373.

(33) Patolsky, F.; Lieber, C. M. Mater. Today 2005, 8, 20-28.

(34) Munoz B C, Steinthal G, Sunshine S. Conductive polymer‐carbon black composites‐based sensor arrays for use in an electronic nose[J]. Sensor Review, 1999.

(35) Shevade A V, Ryan M A, Homer M L, et al. Molecular modeling of polymer composite–analyte interactions in electronic nose sensors[J]. Sensors and Actuators B: Chemical, 2003, 93(1-3): 84-91.

(36) Lewis N S. Comparisons between mammalian and artificial olfaction based on arrays of carbon black− polymer composite vapor detectors[J]. Accounts of chemical research, 2004, 37(9): 663-672.

(37) Lonergan M C, Severin E J, Doleman B J, et al. Array-based vapor sensing using chemically sensitive, carbon black− polymer resistors[J]. Chemistry of Materials, 1996, 8(9): 2298-2312.

(38) Lei H, Pitt W G, McGrath L K, et al. Modeling carbon black/polymer composite sensors[J]. Sensors and Actuators B: Chemical, 2007, 125(2): 396-407.

(39) Chen S G, Hu J W, Zhang M Q, et al. Gas sensitivity of carbon black/waterborne polyurethane composites[J]. Carbon, 2004, 42(3): 645-651.

(40) Gao T, Woodka M D, Brunschwig B S, et al. Chemiresistors for array-based vapor sensing using composites of carbon black with low volatility organic molecules[J]. Chemistry of materials, 2006, 18(22): 5193-5202.

(41) Doleman B J, Lonergan M C, Severin E J, et al. Quantitative study of the resolving power of arrays of carbon black− polymer composites in various vapor- sensing tasks[J]. Analytical Chemistry, 1998, 70(19): 4177-4190.

(42) Pejcic B, Eadington P, Ross A. Environmental monitoring of hydrocarbons: A chemical sensor perspective[J]. Environmental science & technology, 2007, 41(18): 6333-6342.

(43) Shankar P, Rayappan J B B. Gas sensing mechanism of metal oxides: The role of ambient atmosphere, type of semiconductor and gases-A review[J]. Sci. Lett. J, 2015, 4(4): 126.

(44) Tiemann M. Porous metal oxides as gas sensors[J]. Chemistry–A European Journal, 2007, 13(30): 8376-8388.

(45) Yamaura H, Tamaki J, Moriya K, et al. Selective CO Detection by Using Indium Oxide‐Based Semiconductor Gas Sensor[J]. Journal of the Electrochemical Society, 1996, 143(2): L36.

(46) Basu S, Basu P K. Nanocrystalline metal oxides for methane sensors: role of noble metals[J]. Journal of Sensors, 2009, 2009.

(47) Sun C, Maduraiveeran G, Dutta P. Nitric oxide sensors using combination of p- and n-type semiconducting oxides and its application for detecting NO in human breath[J]. Sensors and Actuators B: Chemical, 2013, 186: 117-125.

(48) Khanna A, Kumar R, Bhatti S S. CuO-doped SnO 2 thin films as hydrogen sulfide gas sensor[J]. Applied physics letters, 2003, 82(24): 4388-4390.

(49) Mishra S, Ghanshyam C, Ram N, et al. Detection mechanism of metal oxide gas sensor under UV radiation[J]. Sensors and Actuators B: Chemical, 2004, 97(2-3): 387-390.

(50) Wang X, Yee S S, Carey W P. Transition between neck-controlled and grain- boundary-controlled sensitivity of metal-oxide gas sensors[J]. Sensors and Actuators B: Chemical, 1995, 25(1-3): 454-457.

(51) Galdikas A, Martūnas Z, Šetkus A. SnInO-based chlorine gas sensor[J]. Sensors and Actuators B: Chemical, 1992, 7(1-3): 633-636.

(52) Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice?[J]. Materials Science and Engineering: B, 2007, 139(1): 1-23.

(53) Afzali P, Abdi Y, Arzi E. Directional reduction of graphene oxide sheets using photocatalytic activity of ZnO nanowires for the fabrication of a highly sensitive oxygen sensor. Sensor Actuat B-Chem, 2014, 195: 92–97.

(54) Qin, Y.; Li, X.; Wang, F.; Hu, M. J. Alloys Compd. 2011, 509 (33), 8401.

(55) Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Adv. Funct. Mater. 2011, 21 (12), 2175.

(56) Dey, A. Mater. Sci. Eng. B 2018, 229, 206.

(57) Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T.; Nakatani, N. Thin Solid Films 2009, 517 (6), 2069.

(58) Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. J. Am. Chem. Soc. 2007, 129 (19), 6070.

(59) Meng, G.; Zhuge, F.; Nagashima, K.; Nakao, A.; Kanai, M.; He, Y.; Boudot, M.; Takahashi, T.; Uchida, K.; Yanagida, T. ACS Sensors 2016, 1 (8), 997.

(60) Takahashi, T.; Nichols, P.; Takei, K.; Ford, A. C.; Jamshidi, A.; Wu, M. C.; Ning, C. Z.; Javey, A. Nanotechnology 2012, 23 (4), 045201.

(61) Zhuang, X.; Ning, C. Z.; Pan, A. Adv. Mater. 2012, 24 (1), 13.

(62) Xiong, X.; Jaberansari, L.; Hahm, M. G.; Busnaina, A.; Jung, Y. J. Small 2007, 3 (12), 2006.

(63) Wu, S.; Huang, K.; Shi, E.; Xu, W.; Fang, Y.; Yang, Y.; Cao, A. ACS Nano 2014, 8 (4), 3522.

(64) Hu, H.; Wang, Z.; Ye, Q.; He, J.; Nie, X.; He, G.; Song, C.; Shang, W.; Wu, J.; Tao, P.; et al. ACS Appl. Mater. Interfaces 2016, 8 (31), 20483.

(65) Nguyen, H.; Quy, C. T.; Hoa, N. D.; Lam, N. T.; Duy, N. V.; Quang, V. V.; Hieu, N. V. Sens. Actuators B 2014, 193, 888.

(66) Hung, C. M.; Le, D. T. T.; Van Hieu, N. J. Sci.: Adv. Mater. Devices 2017, 2 (3), 263.

CHAPTER III

(1) Li, K.; Shao, Y.; Yan, H.; Lu, Z.; Griffith, K. J.; Yan, J.; Wang, G.; Fan, H.; Lu, J.; Huang, W.; Bao, B.; Liu, X.; Hou, C.; Zhang, Q.; Li, Y.; Yu, J.; Wang, H. Lattice-contraction triggered synchronous electrochromic actuator. Nat. Commun. 2018, 9, 1– 11, DOI: 10.1038/s41467-018-07241-7.

(2) Al-Turjman, F.; Lemayian, P. Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities: An overview. Comput. Electr. Eng. 2020, 87, 106776 DOI: 10.1016/j.compeleceng.2020.106776.

(3) Zhang, L.; Tian, F.; Nie, H.; Dang, L.; Li, G.; Ye, Q. Classification of multiple indoor air contaminants by an electronic nose and a hybrid support vector machine. Sens. Actuators, B 2012, 174, 114– 125.

(4) Eusebio, L.; Derudi, M.; Capelli, L.; Nano, G.; Sironi, S. Assessment of the indoor odour impact in a naturally ventilated room. Sensors 2017, 17, 778,

(5) Macías, M. M.; Manso, A. G.; Orellana, C. J. G.; Velasco, H. M. G.; Caballero, G. R.; Chamizo, J. C. P. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose. Sensors 2013, 13, 208– 220.

(6) Ampuero, S.; Bosset, J. O. The electronic nose applied to dairy products: a review. Sens. Actuators, B 2003, 94, 1– 12.

(7) Ho, C. K.; Hughes, R. C. In-Situ Chemiresistor Sensor Package for Real-Time Detection of Volatile Organic Compounds in Soil and Groundwater. Sensors 2002, 2, 23– 34.

(8) Wilson, A. D. Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453– 463.

(9) Wang, B.; Cancilla, J. C.; Torrecilla, J. S.; Haick, H. Artificial Sensing Intelligence with Silicon Nanowires for Ultraselective Detection in the Gas Phase. Nano Lett. 2014, 14, 933– 938.

(10) Nakhleh, M. K.; Amal, H.; Jeries, R.; Broza, Y. Y.; Aboud, M.; Gharra, A.; Ivgi, H.; Khatib, S.; Badarneh, S.; Har-Shai, L.; Glass-Marmor, L.; Lejbkowicz, I.; Miller, A.; Badarny, S.; Winer, R.; Finberg, J.; Cohen-Kaminsky, S.; Perros, F.; Montani, D.; Girerd, B.; Garcia, G.; Simonneau, G.; Nakhoul, F.; Baram, S.; Salim, R.; Hakim, M.; Gruber, M.; Gruber, M.; Ronen, O.; Marshak, T.; Doweck, I.; Nativ, O.; Bahouth, Z.; Shi, D.; Zhang, W.; Hua, Q.; Pan, Y.; Tao, L.; Liu, H.; Karban, A.; Koifman, E.; Rainis, T.; Skapars, R.; Sivins, A.; Ancans, G.; Liepniece-Karele, I.; Kikuste, I.; Lasina, I.; Tolmanis, I.; Johnson, D.; Millstone, S. Z.; Fulton, J.; Wells, J. W.; Wilf, L. H.; Humbert, M.; Leja, M.; Peled, N.; Haick, H. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2017, 11, 112– 125.

(11) Provost, F.; Fawcett, T. Data Science and its Relationship to Big Data and Data- Driven Decision Making. Big Data 2013, 1, 51– 59.

(12) Bandodkar, A. J.; Jeerapan, I.; Wang, J. Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sens. 2016, 1, 464– 482.

(13) Lorwongtragool, P.; Sowade, E.; Watthanawisuth, N.; Baumann, R. R.; Kerdcharoen, T. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array. Sensors 2014, 14, 19700– 19712.

(14) Chatterjee, S.; Castro, M.; Feller, J. F. An e-nose made of carbon nanotube- based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. J. Mater. Chem. B 2013, 1, 4563– 4575.

(15) Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T.; Allen, J. W. Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens. Actuators, B 2003, 93, 126– 134.

(16) Sun, Y. F.; Liu, S. B.; Meng, F. L.; Liu, J. Y.; Zhen, J.; Kong, L. T.; Liu, J. H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610– 2631.

(17) Meng, G.; Zhuge, F. W.; Nagashima, K.; Nakao, A.; Kanai, M.; He, Y.; Boudot, M.; Takahashi, T.; Uchida, K.; Yanagida, T. Nanoscale Thermal Management of Single SnO2 Nanowire: pico-Joule Energy Consumed Molecule Sensor. ACS Sens. 2016, 1, 997– 1002.

(18) Wang, C.; Hosomi, T.; Nagashima, K.; Takahashi, T.; Zhang, G.; Kanai, M.; Yoshida, H.; Yanagida, T. Phosphonic Acid Modified ZnO Nanowire Sensors: Directing Reaction Pathway of Volatile Carbonyl Compounds. ACS Appl. Mater. Interfaces 2020, 12, 44265– 44272.

(19) Liu, J.; Nagashima, K.; Nagamatsu, Y.; Hosomi, T.; Saito, H.; Wang, C.; Mizukami, W.; Zhang, G.; Samransuksamer, B.; Takahashi, T.; Kanai, M.; Yasui, T.; Baba, Y.; Yanagida, T. The impact of surface Cu2+ of ZnO/(Cu1- xZnx)O heterostructured nanowires on the adsorption and chemical transformation of carbonyl compounds. Chem. Sci. 2021, 12, 5073– 5081.

(20) Nekita, S.; Nagashima, K.; Zhang, G.; Wang, Q.; Kanai, M.; Takahashi, T.; Hosomi, T.; Nakamura, K.; Okuyama, T.; Yanagida, T. Face-Selective Crystal Growth of Hydrothermal Tungsten Oxide Nanowires for Sensing Volatile Molecules. ACS Appl. Nano Mater. 2020, 3, 10252– 10260.

(21) Zhang, G.; Hosomi, T.; Mizukami, W.; Liu, J.; Nagashima, K.; Takahashi, T.; Kanai, M.; Sugiyama, T.; Yasui, T.; Aoki, T.; Baba, Y.; Ho, J. C.; Yanagida, T. J. Mater. Chem. 2021, 9, 5815– 5824.

(22) Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 2010, 48, 680– 687.

(23) Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L. Polymer–carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull. 2004, 29, 714– 719.

(24) Zee, F.; Judy, J. W. Micromachined polymer-based chemical gas sensor array. Sens. Actuators, B 2001, 72, 120– 128.

(25) Xie, H.; Yang, Q.; Sun, X.; Yang, J.; Huang, Y. Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens. Actuators, B 2006, 113, 887– 891.

(26) Chiou, J. C.; Wu, C. C.; Lin, T. M. Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment. Polymer 2019, 11, 423.

(27) Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators, B 2013, 178, 485– 493.

(28) Wyszynski, B.; Yatabe, R.; Nakao, A.; Nakatani, M.; Oki, A.; Oka, H.; Toko, K. Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study. Sensors 1606, 2017, 17.

(29) Yatabe, R.; Shunori, A.; Wyszynski, B.; Hanai, Y.; Nakao, A.; Nakatani, M.; Oki, A.; Oka, H.; Washio, T.; Toko, K. Odor Sensor System Using Chemosensitive Resistor Array and Machine Learning. IEEE Sens. J. 2021, 21, 2077– 2083.

(30) Niu, L.; Luo, Y.; Li, Z. A highly selective chemical gas sensor based on functionalization of multi-walled carbon nanotubes with poly (ethylene glycol). Sens. Actuators, B 2007, 126, 361– 367.

(31) Rahman, M. M.; Hussein, M. A.; Salam, M. A.; Asiri, A. M. Fabrication of an L-glutathione sensor based on PEG-conjugated functionalized CNT nanocomposites: a real sample analysis. New J. Chem. 2017, 41, 10761– 10772.

(32) Kim, M.; Sowndhararajan, K.; Choi, H. J.; Park, S. J.; Kim, S. Olfactory Stimulation Effect of Aldehydes, Nonanal, and Decanal on the Human Electroencephalographic Activity, According to Nostril Variation. Biomedicines 2019, 7, 57.

(33) Syed, Z.; Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18803– 18808.

(34) Ross, C. F.; Smith, D. M. Use of volatiles as indicators of lipid oxidation in muscle foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18– 25.

(35) Itoh, T.; Miwa, T.; Tsuruta, A.; Akamatsu, T.; Izu, N.; Shin, W.; Park, J.; Hida, T.; Eda, T.; Setoguchi, Y. Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns. Sensors 2016, 16, 1891.

(36) Sakai, Y.; Matsuguchi, M.; Hurukawa, T. Humidity sensor using cross-linked poly(chloromethyl styrene). Sens. Actuators, B 2000, 66, 135– 138.

(37) Gong, M. S.; Kim, J. U.; Kim, J. G. Preparation of water-durable humidity sensor by attachment of polyelectrolyte membrane to electrode substrate by photochemical crosslinking reaction. Sens. Actuators, B 2010, 147, 539.

(38) Wang, C.; Hosomi, T.; Nagashima, K.; Takahashi, T.; Zhang, G. Z.; Kanai, M.; Zeng, H.; Mizukami, W.; Shioya, N.; Shimoaka, T.; Tamaoka, T.; Yoshida, H.; Takeda, S.; Yasui, T.; Baba, Y.; Aoki, Y.; Terao, J.; Hasegawa, T.; Yanagida, T. Rational method of monitoring molecular transformations on metal-oxide nanowire surfaces. Nano Lett. 2019, 19, 2443– 2449.

(39) Han, S.; Kim, C.; Kwon, D. Thermal/oxidative degradation and stabilization of polyethylene glycol. Polymer 1997, 38, 317– 323.

(40) Hester, T. H.; Castillo, D. E.; Goebbert, D. J. Fragmentation of deprotonated polyethylene glycols, [PEG–H]−. Rapid Commun. Mass Spectrom. 2013, 27, 1643– 1648..

(41) Glastrup, J. Degradation of polyethylene glycol. A study of the reaction mechanism in a model molecule: tetraethylene glycol. Polym. Degrad. Stab. 1996, 52, 217– 222.

(42) Nodari, L.; Ricciardi, P. Non-invasive identification of paint binders in illuminated manuscripts by ER-FTIR spectroscopy: a systematic study of the influence of different pigments on the binders’ characteristic spectral features. Herit. Sci. 2019, 7, 1– 13.

(43) Hemenway, J. N.; Carvalho, T. C.; Rao, V. M.; Venkatramana, M. R.; Yongmei, W.; Jaquan, K. L.; Ajit, S. N.; Srinivasa, R. P.; Howard, J. S.; Sailesh, A. V. Formation of reactive impurities in aqueous and neat polyethylene glycol 400 and effects of antioxidants and oxidation inducers. J. Pharm. Sci. 2012, 101, 3305– 3318.

(44) Reddy, K. S.; Prabhakar, M. N.; Babu, P. K.; Venkatesulu, G.; Rao, U. S. K.; Rao, K. C.; Subha, M. C. S. Miscibility Studies of Hydroxypropyl Cellulose/Poly(Ethylene Glycol) in Dilute Solutions and Solid State. Int. J. Carbohydr. Chem. 2012, 2012, 906389.

CHAPTER IV

(1) Z. Zhou, C. Lan, R. Wei and J. C. Ho, J. Mater. Chem. C 2019, 7, 202.

(2) G. Zhang, H. Zeng, J. Liu, K. Nagashima, T. Takahashi, T. Hosomi, W. Tanaka and T. Yanagida, Analyst 2021, 146, 6684.

(3) H. C. Song, G. R. Lee, K. Jeon, H. Lee, S. W. Lee, Y. S. Jung and J. Y. Park, ACS Nano 2020, 14, 8335.

(4) D. Wang, B. Zhu, X. He, Z. Zhu, G. Hutchins, P. Xu and W.-N. Wang, Environ. Sci.: Nano 2018, 5, 1096.

(5) Y. Ren, W. Xie, Y. Li, J. Ma, J. Li, Y. Liu, Y. Zou and Y. Deng, ACS Cent. Sci. 2021, 7, 1885-1897.

(6) P. Bandyopadhyay, R. Jana, K. Bhattacharyya, O. I. Lebedev, U. Dutta, U. Sarkar, A. Detta and M. M. Seikh, New J. Chem. 2019, 43, 16621.

(7) J. Wang, Z. Li and Z. Gu, Sens. Actuators Rep. 2021, 3, 100029.

(8) G. Zhang, T. Hosomi, W. Mizukami, J. Liu, K. Nagashima, T. Takahashi, M. Kanai, T. Sugiyama, T. Yasui, Y. Aoki, Y. Baba, J. C Ho and T. Yanagida, J. Mater. Chem. A 2021, 9, 5815.

(9) H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi and T. Yanagida, Chemosensors 2021, 9, 41.

(10) A. Klamchuen, M. Suzuki, K. Nagashima, H. Yoshida, M. Kanai, F. W. Zhuge, Y. He, G. Meng, S. Kai, S. Takeda, T. Kawai and T. Yanagida, Nano Lett. 2015, 15, 6406.

(11) J. Liu, K. Nagashima, H. Yamashita, W. Mizukami, J. Uzuhashi, T. Hosomi, M. Kanai, X. Zhao, Y. Miura, G. Zhang, T. Takahashi, M. Suzuki, D. Sakai, B. Samransuksamer, Y. He, T. Ohkubo, T. Yasui, Y. Aoki, J. C. Ho, Y. Baba and T. Yanagida, Commun. Mater. 2020, 1, 58.

(12) C. Wang, T. Hosomi, K. Nagashima, T. Takahashi, G. Zhang, M. Kanai, H. Zeng, W. Mizukami, N. Shioya, T. Shimoaka, T. Tamaoka, H. Yoshida, S. Takeda, T. Yasui, Y. Baba, Y. Aoki, J. Terao, T. Hasegawa and T. Yanagida, Nano Lett. 2019, 19, 2443.

(13) C. Wang, T. Hosomi, K. Nagashima, T. Takahashi, G. Zhang, M. Kanai, H. Yoshida and T. Yanagida, ACS Appl. Mater. Interfaces 2020, 12, 44265.

(14) J. Liu, K. Nagashima, Y. Nagamatsu, T. Hosomi, H. Saito, C. Wang, W. Mizukami, G. Zhang, B. Samransuksamer, T. Takahashi, M. Kanai, T. Yasui, Y. Baba and T. Yanagida, Chem. Sci. 2021, 12, 5073.

(15) S. U. Savelev, J. D. Perry, S. J. Bourke, H. Jary, R. Taylor, A. J. Fisher, P. A. Corris, M. Petrie and A. D. Soyza, Lett. Appl. Microbiol. 2011, 52, 610.

(16) P.A.Vazquez-Landaverde, G. Velazquez, J. A. Torres and M. C. Qian, J. Dairy Sci. 2011, 88, 3764.

(17) Y. He, T. Yanagida, K. Nagashima, F. W. Zhuge, G. Meng, B. Xu, A. Klamchuen, S. Rahong, M. Kanai, X. M. Li, M. Suzuki, S. Kai and T. Kawai, J. Phys. Chem. C 2013, 117, 1197.

(18) D. Sakai, K. Nagashima, H. Yoshida, M. Kanai, Y. He, G. Zhang, X. Zhao, T. Takahashi, T. Yasui, T. Hosomi, Y. Uchida, S. Takeda, Y. Baba and T. Yanagida, Sci. Rep. 2019, 9, 14160.

(19) X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida, Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, M. Suzuki, B. Samransuksamer, G. Meng, T. Yasui, Y. Aoki, Y. Baba and T. Yanagida, Nano Lett. 2020, 20, 599.

(20) Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima and Y. Baba, J. Phys. Chem. C 2020, 124, 20563.

(21) K. Nagashima, T. Yanagida, H. Tanaka S. Seki, A. Saeki, S. Tagawa and T. Kawai, J. Am. Chem. Soc. 2008, 130, 5378.

(22) K. Nagashima, T. Yanagida, K. Oka, M. Kanai, A. Klamchuen, J.-S. Kim, B. H. Park and T. Kawai, Nano Lett. 2011, 11, 2114.

(23) K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, J.-S. Kim and B. H. Park, Nano Lett. 2010, 10, 1359.

(24) N. C. Jeong, J. S. Lee, E. L. Tae, Y. J. Lee and K. B. Yoon, Angew. Chem., Int. Ed., 2008, 47, 10128.

(25) D. Degler, U. Weimar and N. Barsan, ACS Sens., 2019, 4, 2228.

(26) O. Lupan, V. Postica, J. Gröttrup, A. K. Mishra, N. H. de Leeuw, J. F. C. Carreira, J. Rodrigues, N. B. Sedrine, M. R. Correia, T. Monteiro, V. Cretu, I. Tiginyanu, D. Smazna, Y. K. Mishra and R. Adelung, ACS Appl. Mater. Interfaces, 2017, 9, 4084.

(27) M. C. Biesinger, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, Appl. Surf. Sci. 2010, 257, 887.

(28) D. D. Sarma and C. N. R. Rao, J. Electron Spectrosc. Relat. Phenom. 1980, 20, 25.

(29) J.-K. An, N.-K. Chung, J.-T. Kim, S.-H. Hahm, G. Lee, S. B. Lee, T. Lee, I.-S. Park and J.-Y. Yun, Materials 2018, 11, 386.

(30) C. Fan, C. Chen, J. Wang, X. Fu, Z. Ren, G. Qian and Z. Wang, Sci. Rep. 2015, 5, 11712.

(31) P. Larkin, 2011. Infrared and Raman spectroscopy; principles and spectral interpretation. Amsterdam Elsevier.

(32) M. D. Hernández-Alonso, I. Tejedor-Tejedor, J. M. Coronado and M. A. Anderson, Appl. Catal. B 2011, 101, 283.

(33) T. Komanoya, K. Nakajima, M. Kitano and M. Hara, J. Phys. Chem. C 2015, 119, 26540.

(34) Z. Topalian, B. I. Stefanov, C. G. Granqvist and L. Österlund, J. Catal. 2013, 307, 265.

(35) O. C. Gagné and C. H. Hawthorne, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2017, 73, 956.

CHAPTER V

(1) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P. Saleh, M.; Feng, X. L.; Mullen, K.; Fasel, R. Atomically Precise Bottom-up Fabrication of Graphene Nanoribbons. Nature. 2010, 466, 470-473. DOI: 10.1038/nature09211

(2) Zhang, W. X.; Yang, S. H. In Situ Fabrication of Inorganic Nanowire Arrays Grown from and Aligned on Metal Substrates. Accounts of Chemical Research. 2009, 42, 10, 1617-1627. DOI: 10.1021/ar900105c

(3) Jensen, J.; Frederik C. K. From the Bottom up–flexible Solid State Electrochromic Devices. Advanced Materials. 2014, 26, 42, 7231-7234. DOI: 10.1002/adma.201402771

(4) Liu, S. T.; Maoz, R.; Sagiv, J. Planned Nanostructures of Colloidal Gold via Self- assembly on Hierarchically Assembled Organic Bilayer Template Patterns with in-situ Generated Terminal Amino Functionality. Nano Letters. 2004, 4, 5, 845- 851. DOI: 10.1021/nl049755k

(5) Philipp, L.; Zielke, L.; Bouvron, S.;Moroni, R.; Voloshina, E.; Hammerschmidt, L.; Dedkov, Y. S.; Fonin, M. In Situ Fabrication of Quasi-Free-Standing Epitaxial Graphene Nanoflakes on Gold, ACS Nano, 2014, 8, 4, 3735-3742. DOI: 10.1021/nn500396c

(6) Tang, S. Y.; Yang C. C.; Su, T. Y.; Yang, T. Z.; Wu, S. C.; Hsu, Y.C.; Chen, Y. Z.; Lin, T. Z.; Shen, J. L.; Lin, H. N.; Chiu, P. W.; Kuo, H. C.; Chueh, Y. L. Design of Core–Shell Quantum Dots–3D WS2 Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano, 2020, 14, 10, 12668-12678. DOI: 10.1021/acsnano.0c01264

(7) Jiang, H. Chemical Preparation of Graphene‐based Nanomaterials and Their Applications in Chemical and Biological Sensors. Small, 2011, 7, 17, 2413-2427. DOI: 10.1002/smll.201002352

(8) Li, M. W.; Bhiladvala, R. B.; Morrow, T. J.; Sioss, J. A.; Lew, K. K.; Redwing, J. M.; Keating, C. D.; Mayer, T. S. Bottom-up Assembly of Large-area Nanowire Resonator Arrays. Nature Nanotechnology, 2008, 3, 2, 88-92. DOI: 10.1038/nnano.2008.26

(9) Hawkeye, M. M.; Brett, M. J. Optimized Colorimetric Photonic‐crystal Humidity SensorFabricated Using Glancing Angle Deposition. Advanced Functional Materials, 2011, 21, 19, 3652-3658. DOI: 10.1002/adfm.201100893

(10) Huang, J. F.; Zhu, Y. H.; Yang, X. L.; Chen, W.; Zhou, Y.; Li, C. Z. Flexible 3D Porous CuO Nanowire Arrays for Enzymeless Glucose Sensing: in situ Engineered Versus ex situ Piled. Nanoscale, 2015, 7, 2, 559-569. DOI: 10.1039/C4NR05620E

(11) Xue, M.; Zhang, Y.; Yang, Y. Processing Matters: In situ Fabrication of Conducting Polymer Microsensors Enables Ultralow‐limit Gas Detection. Advanced Materials, 2008, 20, 11, 2145-2150. DOI: 10.1002/adma.200702864

(12) Attia, R.; Pregibon, D. C.; Doyle, P. S.; Viovy, J. L.; Bartolo, D. Soft Microflow Sensors. Lab on a Chip, 2009, 9, 9, 1213-1218. DOI: 10.1039/B813860E

(13) Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Lien, D. H.; Brooks, G. A.; Davis, R. W.; Javey, A. Fully Integrated Wearable Sensor Arrays for Multiplexed in situ Perspiration Analysis. Nature, 2016, 529, 7587, 509-514. DOI: 10.1038/nature16521

(14) Mijatovic, D.; Eijkel, J. C. T.; Van den Berg, A. Technologies for Nanofluidic Systems: top-down vs. bottom-up—a review. Lab on a Chip. 2005, 5, 5, 492-500. DOI: 10.1039/B416951D

(15) Yang, P. D.; Yan R. X.; Fardy, M. Semiconductor Nanowire: What’s next? Nano Letters, 2010, 10, 5, 1529-1536. DOI: 10.1021/nl100665r

(16) Mehta, R. J.; Zhang, Y. L.; Karthik, C.; Singh, B. Siegel. R. W.; Borca-Tasciuc, T.; Ramanath, G. A New Class of Doped Nanobulk High-Figure-of-Merit Thermoelectrics by Scalable Bottom-up Assembly. Nature Materials, 2012, 11, 3, 233-240. DOI: 10.1038/nmat3213

(17) Zhao, D.; Huang, H.; Chen, S.; Li, Z.; Li, S.; Wang, M. Y.; Z, H. C.; Chen, X. M. In situ Growth of Leakage-Free Direct-Bridging GaN Nanowires: Application to Gas Sensors for Long-Term Stability, Low Power Consumption, and Sub-ppb Detection Limit. Nano Letters, 2019, 19, 6, 3448-3456. DOI: 10.1021/acs.nanolett.8b04846

(18) Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M. Local CuO Nanowire Growth on Microhotplates: In situ Electrical Measurements and Gas Sensing Application. ACS Sensors, 2016, 1, 5, 503-507. DOI: 10.1021/acssensors.6b00042

(19) Park, W. J.; Choi, K. J.; Kim, M. H.; Koo, B. H.; Lee, J. L.; Baik, J. M. Self- Assembled and Highly Selective Sensors Based on Air-Bridge-Structured Nanowire Junction Arrays. ACS Applied Materials & Interfaces, 2013, 5, 15, 6802-6807. DOI: 10.1021/am401635e

(20) Han, H.; Kim, J.; Shin, H. S.; Song. J. Y.; Lee, W. Air‐Bridged Ohmic Contact on Vertically Aligned Si Nanowire Arrays: Application to Molecule Sensors. Advanced Materials, 2012, 24, 17, 2284-2288. DOI: 10.1002/adma.201200347

(21) Qi, P.; Vermesh, O.; Grecu, M.; Javey, A.; Wang, Q.; Dai, H.; Peng, S.; Cho, K. J. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. Nano letters, 2003, 3, 3, 347-51. DOI: 10.1021/nl034010k

(22) Kamins, T. I.; Sharma, S.; Yasseri, A. A.; Li, Z.; Straznicky, J. Metal-catalysed, Bridging Nanowires as Vapour Sensors and Concept for their Use in a Sensor System. Nanotechnology, 2006, 17, 11, S291. DOI:10.1088/0957- 4484/17/11/S11

(23) Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Gas Sensing Properties of Defect-controlled ZnO-nanowire Gas Sensor. Applied Physics Letters, 2008, 93, 26, 263103. DOI: 10.1063/1.3046726

(24) Woo, H. S.; Kwak, C. H.; Kim, I. D.; Lee, J. H. Selective, Sensitive, and Reversible Detection of H2S Using Mo-doped ZnO Nanowire Network Sensors. Journal of Materials Chemistry A, 2014, 2, 18, 6412-6418. DOI: 10.1039/C4TA00387J

(25) Hoa, N.D.; Le, D.; Tam, P.D.; Le, A.T.; Van Hieu, N. On-chip Fabrication of SnO2-nanowire Gas Sensor: The Effect of Growth Time on Sensor Performance. Sensors and Actuators B: Chemical, 2010, 146, 1, 361-367. DOI: 10.1016/j.snb.2010.02.054

(26) Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M. Local CuO Nanowire Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing Application. ACS Sensors, 2016, 1, 5, 503-507. DOI: 10.1021/acssensors.6b00042

(27) Zhao, D.; Huang, H.; Chen, S.; Li, Z.; Li, S.; Wang, M.; Zhu, H.; Chen, X. In Situ Growth of Leakage-free Direct-bridging GaN Nanowires: Application to Gas Sensors for Long-term Stability, Low Power Consumption, and Sub-ppb Detection Limit. Nano letters, 2019, 19, 6, 3448-3456. DOI: 10.1021/acs.nanolett.8b04846

(28) Offermans, P.; Crego-Calama, M.; Brongersma, S. H. Gas Detection with Vertical InAs Nanowire Arrays. Nano letters, 2010, 10, 7, 2412-2415. DOI: 10.1021/nl1005405

(29) Liu, J.; Nagashima, K.; Yamashita, H.; Mizukami, W.; Uzuhashi, J.; Hosomi, T.; Kanai, M.; Zhao, X.; Miura, Y.; Zhang, G.; Takahashi, T.; Suzuki, M.; Sakai, D.; Samransuksamer, B.; He, Y.; Ohkubo, T.; Yasui, T.; Aoki, Y.; Ho, J. C.; Baba, Y.; Yanagida, T. Face-selective Tungstate Ions Drive Zinc Oxide Nanowire Growth Direction and Dopant Incorporation. Communications Materials, 2020, 1, 1, 1-10. DOI: 10.1038/s43246-020-00063-5

(30) Wang, C.; Hosomi, T.; Nagashima, K.; Takahashi, T.; Zhang, G.; Kanai, M.; Zeng, H.; Mizukami, W.; Shioya, N.; Shimoaka, T.; Tamaoka, T.; Yoshida, H.; Takeda, S.; Yasui, T.; Baba, Y.; Aoki, Y.; Terao, J.; Hasegawa, T.; Yanagida, T. Rational Method of Monitoring Molecular Transformations on Metal-oxide Nanowire Surfaces. Nano Letters, 2019, 19, 4, 2443-2449. DOI: 10.1021/acs.nanolett.8b05180

(31) Joo, J.; Chow, B. Y.; Prakash, M.; Boyden, E. S.; Jacobson, M. Face-selective Electrostatic Control of Hydrothermal Zinc Oxide Nanowire Synthesis. Nature Materials, 2011, 10, 8, 596-601. DOI: Nature Materials, 2011, 10, 8, 596-601.

(32) He, Y.; Yanagida, T.; Nagashima, K.; Zhuge, F.; Meng, G.; Xu, B.; Klamchuen, A.; Rahong, S.; Kanai, M.; Li, X.; Suzuki, M.; Kai, S.; Kawai, T. Crystal-plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires. The Journal of Physical Chemistry C, 2013, 117, 2, 1197-1203. DOI: 10.1021/jp3113232

(33) Chen, L. Y.; Yin, Y. T.; Chen, C. H.; Chiou, J. Influence of Polyethyleneimine and Ammonium on the Growth of ZnO Nanowires by Hydrothermal Method. The Journal of Physical Chemistry C, 2011, 115, 43, 20913-20919. DOI:10.1021/jp2056199

(34) Greene, L. E.; Law, M.; Tan, D. H.; Montano, M. Goldberger, J. Somorjai, G.; Yang, P. General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds. Nano Letters, 2005, 5, 7, 1231-1236. DOI: 10.1021/nl050788p

(35) Guillemin, S.; Consonni, V.; Appert, E. Puyoo, E. Rapenne, L.; Roussel, H. Critical Nucleation Effects on the Structural Relationship Between ZnO Seed Layer and Nanowires. The Journal of Physical Chemistry C, 2012, 116, 47, 25106-25111. DOI: 10.1021/jp308643w

(36) Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z.F. ZnO Nanobridges and Nanonails. Nano Letters, 2003, 3, 2, 235-238. DOI: 10.1021/nl025884u

(37) Zhao, C. X.; Li, Y. F.; Zhou, J. Li, L.; Deng, S. Z.; Xu, N. S.; Chen, J. Large- scale Synthesis of Bicrystalline ZnO Nanowire Arrays by Thermal Oxidation of Zinc Film: Growth Mechanism and High-performance Field Emission. Crystal Growth & Design, 2013, 13, 7, 2897-2905. DOI: 10.1021/cg400318f

(38) Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He. R.; Choi, H. J. Controlled Growth of ZnO Nanowires and Their Optical Properties. Advanced Functional Materials, 2002, 12, 5, 323-331. DOI: 10.1002/1616-3028(20020517)

CHAPTER VI

(1) Chen H, Yada R. Nanotechnologies in agriculture: new tools for sustainable development[J]. Trends in Food Science & Technology, 2011, 22(11): 585-594.

(2) Mayer M, Baeumner A J. A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the internet of things[J]. Chemical reviews, 2019, 119(13): 7996-8027.

(3) Chen S, Jiang K, Lou Z, et al. Recent developments in graphene‐based tactile sensors and e‐skins[J]. Advanced Materials Technologies, 2018, 3(2): 1700248.

(4) Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications[M]//Artificial Intelligence in healthcare. Academic Press, 2020: 25- 60.

(5) Balkenhohl F, von dem Bussche‐Hünnefeld C, Lansky A, et al. Combinatorial synthesis of small organic molecules[J]. Angewandte Chemie International Edition in English, 1996, 35(20): 2288-2337.

(6) Sasaki H, Scholl D, Parsons M, et al. Development of an Al2O3/ZrO2-composite high-accuracy NOx sensor[R]. SAE Technical Paper, 2010.

(7) Haefele E, Kaltenmaier K, Schoenauer U. Application of the ZrO2 sensor in determination of pollutant gases[J]. Sensors and Actuators B: Chemical, 1991, 4(3-4): 525-527.

(8) Tan G L, Wu X J. Electronic conductivity of a ZrO2 thin film as an oxygen sensor[J]. Thin Solid Films, 1998, 330(2): 59-61.

(9) Gao N, He C, Ma M, et al. Electrochemical co-deposition synthesis of Au-ZrO2- graphene nanocomposite for a nonenzymatic methyl parathion sensor[J]. Analytica chimica acta, 2019, 1072: 25-34.

(10) Fate W A, Hetrick R E, Vassell W C. Absolute pressure measurements using ZrO2 electrochemical cells[J]. Applied Physics Letters, 1981, 39(11): 924-926.

(11) Tyagi B, Sidhpuria K, Shaik B, et al. Synthesis of nanocrystalline zirconia using sol− gel and precipitation techniques[J]. Industrial & engineering chemistry research, 2006, 45(25): 8643-8650.

(12) Xu J, Zhang Y, Xu X, et al. Constructing La2B2O7 (B= Ti, Zr, Ce) compounds with three typical crystalline phases for the oxidative coupling of methane: the effect of phase structures, superoxide anions, and alkalinity on the reactivity[J]. ACS Catalysis, 2019, 9(5): 4030-4045.

(13) Schild C, Wokaun A, Koeppel R A, et al. Carbon dioxide hydrogenation over nickel/zirconia catalysts from amorphous precursors: on the mechanism of methane formation[J]. The Journal of Physical Chemistry, 1991, 95(16): 6341- 6346.

(14) Ding J, Zhao W, Zi L, et al. Promotional Effect of ZrO2 on supported FeCoK Catalysts for Ethylene Synthesis from catalytic CO2 hydrogenation[J]. International Journal of Hydrogen Energy, 2020, 45(30): 15254-15262.

(15) Indovina V, Cimino A, De Rossi S, et al. Nature of the active site for propene hydrogenation on CrOx/ZrO2 catalysts[J]. Journal of molecular catalysis, 1992, 75(3): 305-319.

(16) Huang J, Jiang S, Wang M, et al. Dynamic Evolution of Fe and Carbon Species over Different ZrO2 Supports during CO Prereduction and Their Effects on CO2 Hydrogenation to Light Olefins[J]. ACS Sustainable Chemistry & Engineering, 2021.

(17) Yamaguchi T, Hightower J W. Hydrogenation of 1, 3-butadiene with 1, 3- cyclohexadiene and molecular deuterium over zirconium dioxide catalysts[J]. Journal of the American Chemical Society, 1977, 99(12): 4201-4203.

(18) Nakano Y, Yamaguchi T, Tanabe K. Hydrogenation of conjugated dienes over ZrO2 by H2 and cyclohexadiene[J]. Journal of Catalysis, 1983, 80(2): 307-314.

(19) Chowdhury I A. Zirconia catalyst and acid-base bifunctional catalysis by zirconia[D]. Lamar University-Beaumont, 1998.

(20) Shane M, Mecartney M L. Sol-gel synthesis of zirconia barrier coatings[J]. Journal of materials science, 1990, 25(3): 1537-1544.

(21) Kim J, Lin Y S. Sol-gel synthesis and characterization of yttria stabilized zirconia membranes[J]. Journal of membrane science, 1998, 139(1): 75-83.

(22) Wang J A, Valenzuela M A, Salmones J, et al. Comparative study of nanocrystalline zirconia prepared by precipitation and sol–gel methods[J]. Catalysis today, 2001, 68(1-3): 21-30.

(23) Y. He, T. Yanagida, K. Nagashima, F. W. Zhuge, G. Meng, B. Xu, A. Klamchuen, S. Rahong, M. Kanai, X. M. Li, M. Suzuki, S. Kai and T. Kawai, J. Phys. Chem. C 2013, 117, 1197-1203.

(24) D. Sakai, K. Nagashima, H. Yoshida, M. Kanai, Y. He, G. Zhang, X. Zhao, T. Takahashi, T. Yasui, T. Hosomi, Y. Uchida, S. Takeda, Y. Baba and T. Yanagida, Sci. Rep. 2019, 9, 14160.

(25) X. Zhao, K. Nagashima, G. Zhang, T. Hosomi, H. Yoshida, Y. Akihiro, M. Kanai, W. Mizukami, Z. Zhu, T. Takahashi, M. Suzuki, B. Samransuksamer, G. Meng, T. Yasui, Y. Aoki, Y. Baba and T. Yanagida, Nano Lett. 2020, 20, 599-605.

(26) Y. Akihiro, K. Nagashima, T. Hosomi, M. Kanai, H. Anzai, T. Takahashi, G. Zhang, T. Yasui, Y. Baba and T. Yanagida, ACS Omega 2019, 4, 8299-8304.

(27) Q. Liu, T. Yasui, K. Nagashima, T. Yanagida, M. Hara, M. Horiuchi, Z. Zhu, H. Takahashi, T. Shimada, A. Arima and Y. Baba, J. Phys. Chem. C 2020, 124, 20563-20568.

(28) Axelsson K O, Keck K E, Kasemo B. Surface compositional changes of ZrO2 in H2O, H2 and atomic hydrogen, investigated by aes and eels[J]. Applied surface science, 1986, 25(1-2): 217-230.

(29) Gritsenko V, Gritsenko D, Shaimeev S, et al. Atomic and electronic structures of amorphous ZrO2 and HfO2 films[J]. Microelectronic engineering, 2005, 81(2-4): 524-529.

(30) Akiyama D, Akiyama H, Uehara A, et al. Phase analysis of uranium oxides after reaction with stainless steel components and ZrO2 at high temperature by XRD, XAFS, and SEM/EDX[J]. Journal of Nuclear Materials, 2019, 520: 27-33.

(31) Choy J H, Yoon J B, Park J H. In situ XAFS study at the Zr K-edge for SiO2/ZrO2 nano-sol[J]. Journal of synchrotron radiation, 2001, 8(2): 782-784.

(32) Reddy B M, Chowdhury B, Smirniotis P G. An XPS study of the dispersion of MoO3 on TiO2–ZrO2, TiO2–SiO2, TiO2–Al2O3, SiO2–ZrO2, and SiO2–TiO2–ZrO2 mixed oxides[J]. Applied Catalysis A: General, 2001, 211(1): 19-30.

(33) Reddy B M, Sreekanth P M, Yamada Y, et al. Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques[J]. Applied Catalysis A: General, 2002, 228(1-2): 269-278.

(34) Zhou Z, Chen S, Qin J, et al. Catalytic Enantioselective Intramolecular C (sp3)− H Amination of 2‐Azidoacetamides[J]. Angewandte Chemie International Edition, 2019, 58(4): 1088-1093.

(35) Zhang G, Hosomi T, Mizukami W, et al. A thermally robust and strongly oxidizing surface of WO 3 hydrate nanowires for electrical aldehyde sensing with long-term stability[J]. Journal of Materials Chemistry A, 2021, 9(9): 5815-5824.

(36) Wang C, Hosomi T, Nagashima K, et al. Rational method of monitoring molecular transformations on metal-oxide nanowire surfaces[J]. Nano letters, 2019, 19(4): 2443-2449.

参考文献をもっと見る