リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Gait Assessment Using Three-Dimensional Acceleration of the Trunk in Idiopathic Normal Pressure Hydrocephalus.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Gait Assessment Using Three-Dimensional Acceleration of the Trunk in Idiopathic Normal Pressure Hydrocephalus.

YAMADA Shigeki 0000-0001-7158-5569 AOYAGI Yukihiko ISHIKAWA Masatsune 0000-0003-3515-4969 YAMAGUCHI Makoto 0000-0002-0121-2895 YAMAMOTO Kazuo 0000-0003-3983-6916 NOZAKI Kazuhiko 90252452 0000-0003-1623-068X 滋賀医科大学

2021.03.10

概要

Background:
The subjective evaluation of pathological gait exhibits a low inter-rater reliability. Therefore, we developed a three-dimensional acceleration of the trunk during walking to assess the pathological gait quantitatively.
Methods:
We evaluated 97 patients who underwent the cerebrospinal tap test and were diagnosed with idiopathic normal pressure hydrocephalus (iNPH) and 68 healthy elderlies. The gait features of all patients were evaluated and classified as one of the following: freezing of gait, wide-based gait, short-stepped gait, shuffling gait, instability, gait festination, difficulty in changing direction, and balance disorder in standing up. All gait features of 68 healthy elderlies were treated as normal. Trunk acceleration was recorded automatically by a smartphone placed on the umbilicus during a 15-foot walking test. Two novel indices were created. The first index was a trunk acceleration index, which was defined as (forward acceleration fluctuation) + (vertical acceleration fluctuation) - (lateral acceleration fluctuation) based on the multivariate logistics regression model, and the second index was created by multiplying the forward acceleration with the vertical acceleration. Additionally, 95% confidence ellipsoid volume of the three-dimensional accelerations was assessed.
Results:
Forward and vertical acceleration fluctuations were significantly associated with the probability of an iNPH-specific pathological gait. The trunk acceleration index demonstrated the strongest association with the probability of an iNPH-specific pathological gait. The areas under the receiver-operating characteristic curves for detecting 100% probability of an iNPH-specific pathological gait were 86.9% for forward acceleration fluctuation, 88.0% for vertical acceleration fluctuation, 82.8% for lateral acceleration fluctuation, 89.0% for trunk acceleration index, 88.8% for forward × vertical acceleration fluctuation, and 87.8% for 95% confidence ellipsoid volume of the three-dimensional accelerations.
Conclusions:
The probability of a pathological gait specific to iNPH is high at the trunk acceleration fluctuation, reduced in the forward and vertical directions, and increased in the lateral direction.

この論文で使われている画像

参考文献

Nakajima, M., Yamada, S., Miyajima, M., Ishii, K., Kuriyama, N., Kazui,

H., et al. (2021). Guidelines for management of idiopathic normal

pressure hydrocephalus (third edition): endorsed by the japanese society

of normal pressure hydrocephalus. Neurol. Med. Chir. (Tokyo). 61, 63–97.

doi: 10.2176/nmc.st.2020-0292

Nutt, J. G., Marsden, C. D., and Thompson, P. D. (1993). Human walking and

higher-level gait disorders, particularly in the elderly. Neurology 43, 268–279.

doi: 10.1212/wnl.43.2.268

Ogata, Y., Ozaki, A., Ota, M., Oka, Y., Nishida, N., Tabu, H., et al.

(2017). Interhemispheric resting-state functional connectivity predicts severity

of idiopathic normal pressure hydrocephalus. Front. Neurosci. 11:470.

doi: 10.3389/fnins.2017.00470

Orendurff, M. S., Segal, A. D., Klute, G. K., Berge, J. S., Rohr, E. S., and Kadel, N. J.

(2004). The effect of walking speed on center of mass displacement. J. Rehabil.

Res. Dev. 41, 829–834. doi: 10.1682/jrrd.2003.10.0150

Schniepp, R., Trabold, R., Romagna, A., Akrami, F., Hesselbarth, K., Wuehr, M.,

et al. (2016). Walking assessment after lumbar puncture in normal-pressure

hydrocephalus: a delayed improvement over 3 days. J. Neurosurg. 126, 148–157.

doi: 10.3171/2015.12.JNS151663

Stolze, H., Kuhtz-Buschbeck, J. P., Drucke, H., Johnk, K., Diercks, C., Palmie, S.,

et al. (2000). Gait analysis in idiopathic normal pressure hydrocephalus-which

parameters respond to the CSF tap test? Clin. Neurophysiol. 111, 1678–1686.

doi: 10.1016/s1388-2457(00)00362-x

Stolze, H., Kuhtz-Buschbeck, J. P., Drucke, H., Johnk, K., Illert, M., and

Deuschl, G. (2001). Comparative analysis of the gait disorder of normal

pressure hydrocephalus and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatr.

70, 289–297. doi: 10.1136/jnnp.70.3.289

Tesio, L., and Rota, V. (2019). The motion of body center of mass during

walking: a review oriented to clinical applications. Front. Neurol. 10:999.

doi: 10.3389/fneur.2019.00999

Williams, M. A., Thomas, G., de Lateur, B., Imteyaz, H., Rose, J. G., Shore, W. S.,

et al. (2008). Objective assessment of gait in normal-pressure hydrocephalus.

Am. J. Phys. Med. Rehabil. 87, 39–45. doi: 10.1097/PHM.0b013e31815b6461

Yamada, S., Aoyagi, Y., Yamamoto, K., and Ishikawa, M. (2019). Quantitative

evaluation of gait disturbance on an Instrumented timed up-and-go test. Aging

Dis. 10, 23–36. doi: 10.14336/AD.2018.0426

Yang, F., Hickman, T. T., Tinl, M., Iracheta, C., Chen, G., Flynn, P., et al. (2016).

Quantitative evaluation of changes in gait after extended cerebrospinal fluid

drainage for normal pressure hydrocephalus. J. Clin. Neurosci. 28, 31–37.

doi: 10.1016/j.jocn.2015.11.013

Agostini, V., Lanotte, M., Carlone, M., Campagnoli, M., Azzolin, I., Scarafia, R.,

et al. (2015). Instrumented gait analysis for an objective pre-/postassessment

of tap test in normal pressure hydrocephalus. Arch. Phys. Med. Rehabil. 96,

1235–1241. doi: 10.1016/j.apmr.2015.02.014

Arvin, M., Mazaheri, M., Hoozemans, M. J. M., Pijnappels, M., Burger, B. J.,

Verschueren, S. M. P., et al. (2016). Effects of narrow base gait on mediolateral

balance control in young and older adults. J. Biomech. 49, 1264–1267.

doi: 10.1016/j.jbiomech.2016.03.011

Ferrari, A., Milletti, D., Giannini, G., Cevoli, S., Oppi, F., Palandri, G., et al.

(2020). The effects of cerebrospinal fluid tap-test on idiopathic normal pressure

hydrocephalus: an inertial sensors based assessment. J. Neuroeng. Rehabil. 17:7.

doi: 10.1186/s12984-019-0638-1

Gard, S. A., Miff, S. C., and Kuo, A. D. (2004). Comparison of kinematic and

kinetic methods for computing the vertical motion of the body center of

mass during walking. Hum. Mov. Sci. 22, 597–610. doi: 10.1016/j.humov.2003.

11.002

Hernandez, A., Silder, A., Heiderscheit, B. C., and Thelen, D. G. (2009). Effect of

age on center of mass motion during human walking. Gait Posture 30, 217–222.

doi: 10.1016/j.gaitpost.2009.05.006

Hurt, C. P., Rosenblatt, N., Crenshaw, J. R., and Grabiner, M. D. (2010).

Variation in trunk kinematics influences variation in step width during

treadmill walking by older and younger adults. Gait Posture 31, 461–464.

doi: 10.1016/j.gaitpost.2010.02.001

Ishikawa, M. (2004). Guideline Committe for Idiopathic Normal Pressure

Hydrocephalus, Japanese Society of Normal Pressure Hydrocephalus: clinical

guidelines for idiopathic normal pressure hydrocephalus. Neurol. Med. Chir.

(Tokyo) 44, 222–223. doi: 10.2176/nmc.44.222

Ishikawa, M., Yamada, S., and Yamamoto, K. (2019a). Agreement study

on gait assessment using a video-assisted rating method in patients

with idiopathic normal-pressure hydrocephalus. PLoS ONE 14:e0224202.

doi: 10.1371/journal.pone.0224202

Ishikawa, M., Yamada, S., Yamamoto, K., and Aoyagi, Y. (2019b). Gait analysis in

a component timed-up-and-go test using a smartphone application. J. Neurol.

Sci. 398, 45–49. doi: 10.1016/j.jns.2019.01.023

Kitade, I., Kitai, R., Neishi, H., Kikuta, K. I., Shimada, S., and Matsumine, A. (2018).

Relationship between gait parameters and MR imaging in idiopathic normal

pressure hydrocephalus patients after shunt surgery. Gait Posture 61, 163–168.

doi: 10.1016/j.gaitpost.2018.01.008

Lenfeldt, N., Larsson, A., Nyberg, L., Andersson, M., Birgander, R., Eklund, A., et al.

(2008). Idiopathic normal pressure hydrocephalus: increased supplementary

motor activity accounts for improvement after CSF drainage. Brain 131,

2904–2912. doi: 10.1093/brain/awn232

Marmarou, A., Bergsneider, M., Relkin, N., Klinge, P., and Black,

P. M. (2005). Development of guidelines for idiopathic normalpressure hydrocephalus:

introduction. Neurosurgery 57, S1–S3.

doi: 10.1227/01.neu.0000168188.25559.0e

Moe-Nilssen, R., and Helbostad, J. L. (2005). Interstride trunk acceleration

variability but not step width variability can differentiate between fit and frail

older adults. Gait Posture 21, 164–170. doi: 10.1016/j.gaitpost.2004.01.013

Mori, E., Ishikawa, M., Kato, T., Kazui, H., Miyake, H., Miyajima, M.,

et al. (2012). Guidelines for management of idiopathic normal pressure

hydrocephalus: second edition. Neurol. Med. Chir. (Tokyo) 52, 775–809.

doi: 10.2176/nmc.52.775

Frontiers in Aging Neuroscience | www.frontiersin.org

Conflict of Interest: YA was employed by company Digital Standard Co., Ltd.,

Osaka, Japan.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2021 Yamada, Aoyagi, Ishikawa, Yamaguchi, Yamamoto and Nozaki.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

March 2021 | Volume 13 | Article 653964

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る