リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relationship between gait stability indices and gait parameters comprising joint angles based on walking data from 288 people」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relationship between gait stability indices and gait parameters comprising joint angles based on walking data from 288 people

Inagaki, Takashi Akiyama, Yasuhiro Okamoto, Shogo Mayumi, Takuya Yamada, Yoji 名古屋大学

2023.05

概要

Accidents during walking caused by gait instability, particularly among the elderly, can be a
major risk factor and cause severe injuries. Therefore, the analysis of gait stability is important
for assessing the risk of falls. Various indices have been proposed to evaluate walking stability.1
The maximum Lyapunov exponent (l s)2 is a major index for evaluating local dynamic gait
stability. It quantifies the stability of a person’s gait by constructing a limit cycle based on the
gait parameters and by calculating the trajectory divergence. Conversely, the margin of stability
(MoS) is an index that determines walking stability based on the kinetic margin of the supporting
area, which prevents falling.3,4
Several studies have investigated various factors that can affect gait stability. Kodesh et al
examined gait symmetry and Jordan et al investigated stride-to-stride fluctuations by measuring
walking speed.5,6 Additionally, Espy et al examined the influence of walking speed and step
length on gait stability and fall risk.7 The relationships between gait parameters and gait stability indices, namely, MoS and l s, have also been studied. Hak et al have reported that slower
walking speeds enhance MoS in the forward direction (MoSf) and that a greater stride frequency
increases MoS in the lateral direction (MoSl).8 Additionally, several studies have investigated the
relationships between l s and walking speed,9-12 stride length, and stride frequency.8 However, the
stability indexes for gait have not been examined while considering more comprehensive gait
parameters such as joint angles during walking. In particular, the relationship between l s and
MoS is unclear, despite these two indices being prominent measures of gait stability.
In this study, we investigated the relationships between l s, MoS, and basic gait parameters,13,14
such as walking speed, step length, and stride frequency, along with joint angles. We used data
from AIST Gait Database 2019,15 containing gait data from 300 healthy people. Although many
gait indices evaluate gait using different parameters, the motion synergy among body links
required for gait motion may lead to certain regularities among indices, including MoS and l s.
Therefore, we aimed to identify statistical relationships between these two indices. Furthermore,
because the relationships between gait parameters, including joint angles, and gait stability indices
have not been investigated in detail, we aimed to identify the parameters that determine or are
correlated with the aforementioned gait stability indices. ...

この論文で使われている画像

参考文献

1 Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. Assessing the stability of human locomotion: a review of

current measures. J R Soc Interface. 2013;10(83):20120999. doi:10.1098/rsif.2012.0999.

2 Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and pathological human walking.

Chaos. 2000;10(4):848–863. doi:10.1063/1.1324008.

3 Hof AL, Gazendam MGJ, Sinke WE. The condition for dynamic stability. J Biomech. 2005;38(1):1–8.

doi:10.1016/j.jbiomech.2004.03.025.

4 Hof AL. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum

Mov Sci. 2008;27(1):112–125. doi:10.1016/j.humov.2007.08.003.

5 Kodesh E, Kafri M, Dar G, Dickstein R. Walking speed, unilateral leg loading, and step symmetry in

young adults. Gait Posture. 2012;35(1):66–69. doi:10.1016/j.gaitpost.2011.08.008.

6 Jordan K, Challis JH, Newell KM. Walking speed influences on gait cycle variability. Gait Posture.

2007;26(1):128–134. doi:10.1016/j.gaitpost.2006.08.010.

7 Espy DD, Yang F, Bhatt T, Pai YC. Independent influence of gait speed and step length on stability and

fall risk. Gait Posture. 2010;32(3):378–382. doi:10.1016/j.gaitpost.2010.06.013.

8 Hak L, Houdijk H, Beek PJ, van Dieën JH. Steps to take to enhance gait stability: the effect of stride

frequency, stride length, and walking speed on local dynamic stability and margins of stability. PLoS One.

2013;8(12):e82842. doi:10.1371/journal.pone.0082842.

9 Dingwell JB, Marin LC. Kinematic variability and local dynamic stability of upper body motions when

walking at different speeds. J Biomech. 2006;39(3):444–452. doi:10.1016/j.jbiomech.2004.12.014.

10 England SA, Granata KP. The influence of gait speed on local dynamic stability of walking. Gait Posture.

2007;25(2):172–178. doi:10.1016/j.gaitpost.2006.03.003.

11 Kang HG, Dingwell JB. Effects of walking speed, strength and range of motion on gait stability in healthy

older adults. J Biomech. 2008;41(14):2899–2905. doi:10.1016/j.jbiomech.2008.08.002.

12 Bruijn SM, van Dieën JH, Meijer OG, Beek PJ. Is slow walking more stable? J Biomech. 2009;42(10):1506–

1512. doi:10.1016/j.jbiomech.2009.03.047.

13 Oberg T, Karsznia A, Oberg K. Basic gait parameters: reference data for normal subjects, 10–79 years of

age. J Rehabil Res Dev. 1993;30(2):210–223.

14 Oberg T, Karsznia A, Oberg K. Joint angle parameters in gait: reference data for normal subjects, 10–79

years of age. J Rehabil Res Dev. 1994;31(3):199–213.

15 Kobayashi Y, Hida N, Nakajima K, Fujimoto M, Mochimaru M. 2019: AIST gait database 2019 [computer

program]. https://unit.aist.go.jp/harc/ExPART/GDB2019.html. Accessed December 25, 2022.

16 Blanke DJ, Hageman PA. Comparison of gait of young men and elderly men. Phys Ther. 1989;69(2):144–

148. doi:10.1093/ptj/69.2.144.

17 Ostrosky KM, VanSwearingen JM, Burdett RG, Gee Z. A comparison of gait characteristics in young and

Nagoya J. Med. Sci. 85. 211–222, 2023

221

doi:10.18999/nagjms.85.2.211

Takashi Inagaki et al

old subjects. Phys Ther. 1994;74(7):637–644. doi:10.1093/ptj/74.7.637.

18 Finley FR, Cody KA. Locomotive characteristics of urban pedestrians. Arch Phys Med Rehabil.

1970;51(7):423–426.

19 Mayumi T, Akiyama Y, Okamoto S, Yamada Y. Identification of healthy elderly’s gait characteristics

by analyzing gait parameters. Proc. – IEEE Int Conf Robot Autom. 2021:220–223. doi:10.1109/

ISR50024.2021.9419489.

20 Bruijn SM, Bregman DJJ, Meijer OG, Beek PJ, van Dieën JH. Maximum Lyapunov exponents as predictors of global gait stability: A modelling approach. Med Eng Phys. 2012;34(4):428–436. doi:10.1016/j.

medengphy.2011.07.024.

21 Takens F. Detecting strange attractors in turbulence in Dynamical Systems and Turbulence. In: Rand DA,

Young Ls, eds. Lecture Notes in Mathematics. Springer-Verlag; 1981:366–381.

22 Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction

using a geometrical construction. Phys Rev A. 1992;45(6):3403–3411. doi:10.1103/physreva.45.3403.

23 Fraser AM. Using mutual information to estimate metric entropy. In: Mayer-Kress G, ed. Dimensions and

Entropies in Chaotic Systems. Berlin : Springer-Verlag; 1986:82–91.

24 Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents

from small data sets. Physica D. 1993;65(1–2):117–134. doi: 10.1016/0167-2789(93)90009-P.

25 Sloot LH, van Schooten KS, Bruijn SM, Kingma H, Pijnappels M, van Dieën JH. Sensitivity of local

dynamic stability of over-ground walking to balance impairment due to galvanic vestibular stimulation. Ann

Biomed Eng. 2011;39(5):1563–1569. doi:10.1007/s10439-010-0240-y.

26 Gill L, Huntley AH, Mansfield A. Does the margin of stability measure predict medio-lateral stability of gait

with a constrained-width base of support? J Biomech. 2019;95:109317. doi:10.1016/j.jbiomech.2019.109317.

27 Lockhart TE, Liu J. Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics.

2008;51(12):1860–1872. doi:10.1080/00140130802567079.

28 Toebes MJP, Hoozemans MJM, Furrer R, Dekker J, van Dieën JH. Local dynamic stability and variability

of gait are associated with fall history in elderly subjects. Gait Posture. 2012;36(3):527–531. doi:10.1016/j.

gaitpost.2012.05.016.

29 Mehdizadeh S. The largest Lyapunov exponent of gait in young and elderly individuals: A systematic review.

Gait Posture. 2018;60:241–250. doi:10.1016/j.gaitpost.2017.12.016.

30 Kobayashi K, Imagama S, Ando K, et al. Dynapenia and physical performance in community-dwelling

elderly people in Japan. Nagoya J Med Sci. 2020;82(3):415–424. doi:10.18999/nagjms.82.3.415.

References End

Nagoya J. Med. Sci. 85. 211–222, 2023

222

doi:10.18999/nagjms.85.2.211

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る