リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development and Implementation of a Tactile Feedback System Using End-to-end Tactile Sensor Data Projections for Wearable Human-Robot Interaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development and Implementation of a Tactile Feedback System Using End-to-end Tactile Sensor Data Projections for Wearable Human-Robot Interaction

Geier Andreas 早稲田大学

2021.08.04

概要

The sense of touch enables humans to perform a great variety of exploration and manipulation tasks in the physical world. In unstructured environments, tactile information constitutes a key sensory channel that is especially important. In this regard, tactile sensor skin has been widely adopted in robot design and control. The integration of distributed tactile sensors enables information-rich feedback from the robot's environment and makes robot manipulators increasingly capable of dexterous object manipulation and even active (tactile) exploration. For this reason, not only modern industrial robots but especially emerging robot applications like social and service robots benefit from the deployment of soft, distributed tactile skin sensors, because they enable higher manipulation capabilities, a higher flexibility, and in turn, possess a tremendous potential for versatile, human-like interaction with the physical world. However, in human-centered applications, e.g. robot-teleoperation or human-robot interaction, this massive tactile sensor data must be projected to the skin of a human operator in order to create meaningful, yet efficient tactile feedback that allows either for highly-efficient teleoperation of the robot or for tactile immersion while remotely interacting with the robot. In addressing these challenges, this thesis seeks to develop a vastly applicable end-to-end tactile feedback system for wearable human-robot interaction that provides tactile feedback from massive tactile sensor data by means of compact tactile displays with sparse actuator distributions.

Chapter 1 lays the groundwork to this thesis: First, insight into the mechanisms of tactile stimuli perception is provided. Second, existing tactile sensors, their large-scale implementations into (anthropomorphic) robots, and algorithms for tactile data processing are extensively reviewed in regard to state-of-the-art tactile feedback systems. Based on this review, chapter 1 derives the objectives for the development of a novel data-driven tactile feedback system that uses end-to-end tactile data projections in combination with illusory tactile sensations to mitigate space and energy restrictions of tactile display hardware. Finally, the implementation of this tactile feedback system into a wearable fingertip module with ultra-compact, energy-dense shape memory alloy (SMA)-based micro-vibrators is outlined.

Chapter 2 introduces the complete system architecture for the experiments and evaluations of the proposed data-driven tactile feedback system and the first fingertip module prototype. The system architecture involves the anthropomorphic Allegro robot hand covered with soft, distributed uSkin tactile sensor skin, a host PC running resource-intensive algorithms on the tactile data, a compact microcontroller unit that manages the computed spatio-temporal actuation patterns, an I2C-enabled custom-made tactile display driver circuit for the generation of pulsed current signals, and the SMA-based tactile display prototypes to create vibro-mechanical stimuli on the human skin. Even though soft- and hardware developments considerably evolved throughout the experimental trials, chapter 2 also reviews fundamental design and operational principles of the SMA-based micro-vibrators, thereby, characterizes the potential applications and inherent limitations of the tactile display prototype. An important a priori limitation of the SMA-based prototype is the restriction to a subset of tactile stimuli in accordance with the frequency/ stimuli response of the cutaneous mechanoreceptors and the absence of proprioceptive feedback, i.e. stimuli that inform the brain on dynamic positioning/loading of articulated body segments. The SMA-based micro-vibrator generates mechanical vibrations perceived by the Meissner and Pacinian corpuscles and therefore allows for the construction of tactile illusions. The realization of sustained pressure (Merkel), skin shear (Ruffini) or proprioceptive feedback, however, would necessitate a different embodiment of the SMA actuators or the complementation with a different actuator. In conclusion, chapter 2 implements the outlined design objectives from chapter 1 for experimental analysis and evaluation.

Chapter 3 describes the algorithm end-to-end tactile texture projection with psycho-physically meaningful latent space coordinates. This algorithm deploys a deep gated recurrent unit-based autoencoder (GRU-AE) to capture the perceptual dimensions of tactile textures in latent space coordinates that coincided with the psychophysical layer of human material perception. The auto-compression of tactile sensor data enabled an end-to-end mapping from tactile sensor data to tactile actuator driving signal by modulating the tactile display actuator driving signal in accordance with the latent space coordinates of explored surfaces. The approach was experimentally verified by evaluating the prediction performance of the GRU-AE on seen and unseen tactile data that were gathered during active tactile exploration of objects commonly encountered in daily living using a uSkin tactile sensor module. Additionally, a user study on the first prototype of the custom-made tactile display was conducted in which real tactile perceptions in response to active tactile object exploration were compared to the emulated tactile feedback using the proposed GRU-AE approach. The algorithm was able to drive the tactile display module and generated convincing tactile illusory stimuli even for new, unseen textures alone from the uSkin tactile sensor readouts. The experimental results revealed that the GRU-AE, or AE approaches in general, allows for finding an end-to-end mapping between tactile sensor and tactile display space over a wide range of tactile sensor and actuator combinations. However, the experiments revealed that the specifics of tactile sensor and tactile display must be accounted for, because their respective hardware characteristics, e.g. frequency response or material properties, in capturing and projecting relevant surface features impact the quality and integrity of the tactile stimulus. Finally, another important limitation is the pre-definition of the moving contact pattern that was necessary to emulate the sensation of moving object surfaces by means of tactile illusions.

Chapter 4 introduces sequential tactile data compression, which resolves the dimensional mismatch between tactile sensor space and tactile display space by performing two stages of modified k-means++ clustering on the raw tactile sensor data at each time instant. This dynamic compression allows for the identification of discrete contact locations and stimulus intensities thereby enables the representation of the tactile data by tactile illusions. The algorithm compresses the tactile sensor data into a number of representative discrete contact locations and stimuli intensities to match the tactile display specifications. In this manner, the compressed tactile data preserves its physical meaning and enables direct adaptive feedback with regard to the design and transduction principles of the tactile display. The algorithm is experimentally verified within an extensive parameter study by evaluating the original and compressed tactile data that was gathered during the active tactile exploration of several objects of daily living by the Allegro robot hand that was covered with 15 uSkin tactile sensor modules providing 240 x,y,z-axis force vector measurements at each time instant. The algorithm deploys k-means++ clustering and is therefore an iterative algorithm. For this reason, chapter 4 also investigates the algorithm performance under varying conditions and discusses multiprocessing-implementations to alleviate the speed problem that may become relevant for extremely large amounts of sensor data. In conclusion, the algorithm allows for the direct feedback from massive tactile sensor data for a broad variety of tactile sensors and tactile displays therefore enables the compressed yet intuitive representation of massive tactile sensor information by means of tactile illusions. Since the algorithm produces discrete contact points of varying intensity, it could be combined with the algorithm from chapter 3 to attribute arbitrarily moving contact points with textural properties.

Chapter 5 is concerned with the implementation of the system architecture as introduced in chapter 2, 3, and 4 into a compact and wearable human-machine interface. Chapter 5 is therefore application-oriented and describes the mechanical (wearable fingertip module) and electronic (compact PCB of the I2C-enabled driver circuit) implementation of the system components with optimized wiring into a compact, ergonomic fingertip module. As a result, chapter 5 arrives at a novel, scalable tactile fingertip module that successfully implements the in chapter 1 initially outlined design paradigms: a scalable solution with an end-to-end design in a compact form factor that deploys tactile illusions to alleviate energy and space restrictions inherent to tactile display hardware. The tactile fingertip display module prototype was successfully tested in experiments: The contact trajectories of an object that moved across a uSkin tactile sensor module were transmitted to human users by deploying the algorithm from chapter 4 and quasi-dynamic, consecutive projections of compressed contact locations by means of tactile illusions. Hence, the proposed human-machine interface solves the unknown transformation from tactile sensor space to tactile actuator space and utilizes tactile illusions to mitigate limitations of tactile display actuators in terms of energy consumption and actuator density. In this respect, the developed fingertip module exhibits similar limitations as described in the previous chapters, i.e., the projection of tactile stimuli using SMA-based micro-vibrators is limited to a subset of perceivable tactile stimuli, excluding static protrusion, shear, and heat flux. Moreover, the generation of robust tactile illusions is still a matter of research: The experiments on the feedback of moving contacts patterns revealed inconsistencies of the perceived stimuli with respect to the desired contact trajectory due to the SMA-based actuator’s limited range of producible stimulus intensities and relative movements between finger pad and display module. However, the experiments on both the hard- and software components have shown that the proposed data-driven tactile feedback system effectively utilizes end-to-end tactile data projections to efficiently convey physical contact information.

Chapter 6 draws conclusion and summarizes the achievements and limitations of the presented developments of the end-to-end tactile feedback system for wearable human-robot interaction. The tactile feedback system uses tactile sensor data projections to provide cutaneous feedback from massive tactile sensor raw data by compact tactile displays with sparse actuator distributions in an end-to-end manner. The presented hard- and software solutions were experimentally verified and implemented into a prototype of a compact, wearable fingertip module with networking capabilities. Further developments should address the robustness of the generated tactile illusions and improvements for increased ergonomics. Moreover, due to the need for extensive experimental field testing in unstructured environments, the algorithms that enabled the data projections and were run on a stationary host PC with GPU should be migrated to mobile, embedded computing boards with GPU, e.g. the Nvidia Jetson Family, which is currently in progress. In this context, the overall system integration with a data glove and, e.g., the Allegro robot hand for closed-loop robot-teleoperation poses the next logical challenge. Due to the compactness and modularity of the developed hard- and software, several fingertip modules, e.g. four tactile display modules matching the four fingertips of the Allegro robot hand, can be seamlessly integrated into a glove like wearable device that covers only the finger tips and allows to be simultaneously worn with a data glove. For a greater coverage of perceivable stimulus modalities, the deployment of merely one type of actuator (embodiment) is not sufficient. The integration of heat flux feedback and the complementation of the cutaneous feedback with kinesthetic feedback, i.e. the implementation of actuators that target the proprioceptive receptors in the joints and muscles of articulating body segments, should be addressed in the future.

この論文で使われている画像

参考文献

[1] C. Pacchierotti, Cutaneous Haptic Feedback in Robotic Teleoperation. Jan. 2015, ISBN: 978-3-319-25457-9. DOI: 10.1007/978-3-319-25457-9.

[2] H. Culbertson, S. Schorr, and A. Okamura, “Haptics: The present and future of artificial touch sensation”, Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 385–409, 2018. DOI: 10.1146/ annurev-control-060117-105043.

[3] M. Park, B.-G. Bok, J.-H. Ahn, and M.-S. Kim, “Recent advances in tactile sensing technology”, Micromachines, vol. 9, no. 7, 2018, ISSN: 2072-666X. DOI: 10.3390/mi9070321. [Online]. Available: https:// www.mdpi.com/2072-666X/9/7/321.

[4] I. E. Rassi and J.-M. E. Rassi, “A review of haptic feedback in tele-operated robotic surgery”, Journal of Medical Engineering & Technology, vol. 44, no. 5, pp. 247–254, 2020, PMID: 32573288. DOI:10.1080/03091902.2020.1772391. eprint:https://doi.org/10.1080/03091902 . 2020 . 1772391. [Online]. Available: https://doi.org/10.1080/03091902.2020.1772391.

[5] C. Huang, Q. Wang, M. Zhao, C. Chen, S. Pan, and M. Yuan, “Tactile perception technologies and their applications in minimally invasive surgery: A review”, Frontiers in Physiology, vol. 11, p. 1601, 2020, ISSN: 1664-042X. DOI: 10.3389/fphys.2020.611596. [Online]. Available: https://www.frontiersin.org/article/10.3389/fphys.2020. 611596.

[6] Z. Kappassov, J. A. Corrales, and V. Perdereau, “Tactile sensing in dexterous robot hands -— review”, Robotics and Autonomous Systems, vol. 74, pp. 195–220, 2015.

[7] Q. Li, O. Kroemer, Z. Su, F. F. Veiga, M. Kaboli, and H. J. Ritter, “A review of tactile information: Perception and action through touch”, IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1619–1634, 2020. DOI: 10.1109/TRO.2020.3003230.

[8] G. Westling and R. Johansson, “Factors influencing the force control during precision grip”, Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale, vol. 53, pp. 277–84, Feb. 1984. DOI: 10.1007/BF00238156.

[9] R. S. Dahiya, G. Metta, M. Valle, and G. Sandini, “Tactile sensing—from humans to humanoids”, IEEE Transactions on Robotics, vol. 26, no. 1, pp. 1–20, 2010.

[10] C. Piazza, G. Grioli, M. Catalano, and A. Bicchi, “A century of robotic hands”, Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, no. 1, pp. 1–32, 2019. DOI: 10.1146/annurev-control-060117-105003.

[11] C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo, “Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives”, IEEE Transactions on Haptics, vol. 10, no. 4, pp. 580–600, Oct. 2017, ISSN: 1939-1412. DOI: 10.1109/TOH.2017.2689006.

[12] C. Pacchierotti, D. Prattichizzo, and K. J. Kuchenbecker, “Displaying sensed tactile cues with a fingertip haptic device”, IEEE Transactions on Haptics, vol. 8, no. 4, pp. 384–396, 2015. DOI: 10.1109/TOH.2015. 2445770.

[13] T. Sheridan, “Telerobotics”, Automatica, vol. 25, no. 4, pp. 487 –507, 1989, ISSN: 0005-1098. DOI: https : / / doi . org / 10 . 1016 / 0005 - 1098(89 ) 90093 - 9. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ 0005109889900939.

[14] W. McMahan, J. Gewirtz, D. Standish, P. Martin, J. A. Kunkel, M. Lilavois, A. Wedmid, D. I. Lee, and K. J. Kuchenbecker, “Tool contact acceleration feedback for telerobotic surgery”, IEEE Transactions on Haptics, vol. 4, no. 3, pp. 210–220, 2011. DOI: 10.1109/TOH.2011.31.

[15] Z. Quek, W. Provancher, and A. Okamura, “Evaluation of skin deformation tactile feedback for teleoperated surgical tasks”, IEEE Transactions on Haptics, vol. PP, pp. 1–1, Oct. 2018. DOI: 10.1109/TOH.2018.2873398.

[16] A. Abiri, J. Pensa, A. Tao, J. Ma, Y. Juo, S. J. Askari, J. Bisley, J. E. Rosen, E. P. Dutson, and W. S. Grundfest, “Multi-modal haptic feedback for grip force reduction in robotic surgery”, Sci Rep, vol. 9, pp. 1–1, Oct. 2019. DOI: 10.1038/s41598-019-40821-1.

[17] C. Pacchierotti, E. M. Young, and K. J. Kuchenbecker, “Task-driven pca-based design optimization of wearable cutaneous devices”, IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2214–2221, 2018. DOI: 10.1109/LRA.2018.2810953.

[18] C. Pacchierotti, D. Prattichizzo, and K. Kuchenbecker, “Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery”, IEEE transactions on bio-medical engineering, vol. 63, Jul. 2015. DOI: 10.1109/TBME.2015.2455932.

[19] G. Huisman, A. Darriba Frederiks, B. van Dijk, B. Krose, and D. Heylen, “Self touch to touch others: Designing the tactile sleeve for social touch”, in TEI 13: Seventh International Conference on Tangible, Embedded and Embodied Interaction, ser. 5, Universitat Pompeu Fabra, vol. 4, Barcelona, Spain, Feb. 2017, p. 213.

[20] A. Israr and I. Poupyrev, “Tactile brush: Drawing on skin with a tactile grid display”, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’11, Association for Computing Machinery, 2011, 2019–2028, ISBN: 9781450302289. DOI:10 . 1145 / 1978942 . 1979235. [Online]. Available: https://doi.org/10.1145/1978942.1979235.

[21] S. Baik, I. Han, J. Park, and J. Park, “Multi-fingertip vibrotactile array interface for 3d virtual interaction”, in 2020 IEEE Haptics Symposium (HAPTICS), 2020, pp. 898–903. DOI: 10.1109/HAPTICS45997.2020. ras.HAP20.5.08241ef4.

[22] J. Tong, O. Mao, and D. Goldreich, “Two-point orientation discrimination versus the traditional two-point test for tactile spatial acuity assessment”, Frontiers in human neuroscience, vol. 7, p. 579, Sep. 2013. DOI: 10.3389/fnhum.2013.00579.

[23] A. Zimmerman, L. Bai, and D. Ginty, “The gentle touch receptors of mammalian skin”, Science (New York, N.Y.), vol. 346, pp. 950–4, Nov. 2014. DOI: 10.1126/science.1254229.

[24] H. Kajimoto, M. Konyo, and S. Saga, Pervasive haptics: Science, design, and application. Springer, Jan. 2016, pp. 1–306. DOI: 10.1007/978-4- 431-55772-2.

[25] S. Carl, “The psychology of touch”, in. Psychology Press, 1991, ch. Vibrotactile Pattern Perception: Some Findings and Applications.

[26] R. Klatzky, S. Lederman, C. Hamilton, M. Grindley, and R. Swendsen, “Feeling textures through a probe: Effects of probe and surface geometry and exploratory factors”, Perception & psychophysics, vol. 65, pp. 613–31, Jun. 2003. DOI: 10.3758/BF03194587.

[27] K. Fukuyama, N. Takahashi, F. Zhao, and H. Sawada, “Tactile display using the vibration of sma wires and the evaluation of perceived sensations”, in 2009 2nd Conference on Human System Interactions, May 2009, pp. 685–690. DOI: 10.1109/HSI.2009.5091060.

[28] J. Park, J. Kim, Y. Oh, and H. Z. Tan, “Rendering moving tactile stroke on the palm using a sparse 2d array”, in Haptics: Perception, Devices, Control, and Applications, F. Bello, H. Kajimoto, and Y. Visell, Eds., Cham: Springer International Publishing, 2016, pp. 47–56, ISBN: 978-3-319-42321-0.

[29] J. V. Salazar Luces, K. Okabe, Y. Murao, and Y. Hirata, “A phantom-sensation based paradigm for continuous vibrotactile wrist guidance in two-dimensional space”, IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 163–170, 2018. DOI: 10.1109/LRA.2017.2737480.

[30] G. Park and S. Choi, “Tactile information transmission by 2d stationary phantom sensations”, Apr. 2018, pp. 1–12. DOI: 10.1145/3173574.3173832.

[31] G. Yun, S. Oh, and S. Choi, “Seamless phantom sensation moving across a wide range of body”, in 2019 IEEE World Haptics Conference (WHC), 2019, pp. 616–621. DOI: 10.1109/WHC.2019.8816104.

[32] B. Dandu, Y. Shao, A. Stanley, and Y. Visell, “Spatiotemporal haptic effects from a single actuator via spectral control of cutaneous wave propagation”, in 2019 IEEE World Haptics Conference (WHC), 2019, pp. 425–430. DOI: 10.1109/WHC.2019.8816149.

[33] H. E. Burtt, “Tactual illusions of movement”, Journal of Experimental Psychology, vol. 2, no. 5, pp. 371–385, 1917. DOI: 10.1037/h0074614.

[34] G. v. Békésy, “Sensations on the skin similar to directional hearing, beats, and harmonics of the ear”, The Journal of the Acoustical Society of America, vol. 29, no. 4, pp. 489–501, 1957. DOI: 10.1121/1.1908938.

[35] D. S. Alles, “Information transmission by phantom sensations”, IEEE Transactions on Man-Machine Systems, vol. 11, no. 1, pp. 85–91, Mar. 1970, ISSN: 2168-2860. DOI: 10.1109/TMMS.1970.299967.

[36] J. H. Kirman, “Tactile apparent movement: The effects of interstimulus onset interval and stimulus duration.”, Perception and Psychophysics, vol. 15, pp. 1–6, 1974. DOI: 10.3758/BF03205819.

[37] C. Sherrick and R. Rogers, “Apparent haptic movement.”, Perception and Psychophysics, vol. 1, pp. 175–180, 1966.

[38] J. Lee, Y. Kim, and G. Jounghyun Kim, “Rich pinch: Perception of object movement with tactile illusion”, IEEE Transactions on Haptics, vol. 9, no. 1, pp. 80–89, 2016. DOI: 10.1109/TOH.2015.2475271.

[39] J. Kim, Y. Oh, and J. Park, “Adaptive vibrotactile flow rendering of 2.5d surface features on touch screen with multiple fingertip interfaces”, in 2017 IEEE World Haptics Conference (WHC), 2017, pp. 316–321. DOI: 10.1109/WHC.2017.7989921.

[40] S. Zhao, A. Israr, M. Fenner, and R. L. Klatzky, “Intermanual apparent tactile motion and its extension to 3d interactions”, IEEE Transactions on Haptics, vol. 10, no. 4, pp. 555–566, 2017. DOI: 10.1109/TOH.2017.2678502.

[41] H. Elsayed, M. Weigel, F. Müller, M. Schmitz, K. Marky, S. Günther, J. Riemann, and M. Mühlhäuser, “Vibromap: Understanding the spacing of vibrotactile actuators across the body”, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4, no. 4, Dec. 2020. DOI:10 . 1145 / 3432189. [Online]. Available:https://doi.org/10.1145/3432189.

[42] J. Fishel and G .Loeb, “Bayesian exploration for intelligent identification of textures”, Frontiers in Neurorobotics, vol. 6, p. 4, 2012, ISSN: 1662-5218. DOI: 10 . 3389 / fnbot . 2012 . 00004. [Online]. Available : https://www.frontiersin.org/article/10.3389/fnbot.2012.00004.

[43] Shadow Robot Company Shadow Dexterous HandTM. https://www.shadowrobot.com/products/dexterous-hand, Accessed: 2020-06-19.

[44] T. P. Tomo, M. Regoli, A. Schmitz, L. Natale, H. Kristanto, S. Somlor, L. Jamone, G. Metta, and S. Sugano, “A new silicone structure for uskin—a soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot icub”, IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2584–2591, 2018. DOI: 10.1109/LRA.2018.2812915.

[45] A. Geier, G. Yan, T. P. Tomo, S. Ogasa, S. Somlor, A. Schmitz, and S. Sugano, “Sequential clustering for tactile image compression to enable direct adaptive feedback”, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 8117–8124. DOI: 10.1109/IROS40897.2019.8968493.

[46] D. Ma, E. Donlon, S. Dong, and A. Rodriguez, “Dense tactile force estimation using gelslim and inverse fem”, May 2019, pp. 5418–5424. DOI: 10.1109/ICRA.2019.8794113.

[47] M. Lambeta, P.-W. Chou, S. Tian, B. Yang, B. Maloon, V. R. Most, D. Stroud, R. Santos, A. Byagowi, G. Kammerer, and et al., “Digit: A novel design for a low-cost compact high-resolution tactile sensor with application to in-hand manipulation”, IEEE Robotics and Automation Letters, vol. 5, no. 3, 3838–3845, Jul. 2020, ISSN: 2377-3774. DOI: 10 . 1109 / lra . 2020 . 2977257. [Online]. Available: http://dx.doi.org/10.1109/LRA.2020.2977257.

[48] SynTouch Inc. Resource & Download, https://syntouchinc.com/wp- content/uploads/2017/01/BioTac-Brochure.pdf, Accessed: 2020-06-19.

[49] N. Wettels and G. E. Loeb, “Haptic feature extraction from a biomimetic tactile sensor: Force, contact location and curvature”, in 2011 IEEE International Conference on Robotics and Biomimetics, 2011, pp. 2471–2478. DOI: 10.1109/ROBIO.2011.6181676.

[50] M. Kaboli, R. Walker, and G. Cheng, “Re-using prior tactile experience by robotic hands to discriminate in-hand objects via texture properties”, May 2016, pp. 2242–2247. DOI: 10.1109/ICRA.2016.7487372.

[51] BarrettTM Advanced Robotics BarrettHandTM, https://advanced.barrett.com/barretthand, Accessed: 2020-06-19.

[52] Wonik Robotics Allegro Hand, http://www.simlab.co.kr/Allegro-Hand.htm, Accessed: 2020-06-19.

[53] T. P. Tomo, A. Schmitz, W. K. Wong, H. Kristanto, S. Somlor, J. Hwang, L. Jamone, and S. Sugano, “Covering a robot fingertip with uskin: A soft electronic skin with distributed 3-axis force sensitive elements for robot hands”, IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 124–131, 2018. DOI: 10.1109/LRA.2017.2734965.

[54] S. Funabashi, G. Yan, A. Geier, A. Schmitz, T. Ogata, and S. Sugano, “Morphology-specific convolutional neural networks for tactile object recognition with a multi-fingered hand”, in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 57–63.

[55] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “Gelslim: A high-resolution, compact, robust, and calibrated tactile-sensing finger”, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 1927–1934. DOI: 10.1109/IROS.2018.8593661.

[56] A. Padmanabha, F. Ebert, S. Tian, R. Calandra, C. Finn, and S. Levine, Omnitact: A multi-directional high resolution touch sensor, 2020. arXiv: 2003.06965 [cs.RO].

[57] N. F. Lepora, K. Aquilina, and L. Cramphorn, “Exploratory tactile servoing with active touch”, IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1156–1163, Apr. 2017, ISSN: 2377-3766. DOI: 10.1109/LRA.2017.2662071.

[58] H. Iwata and S. Sugano, “Design of human symbiotic robot twendy- one”, in 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 580–586.

[59] H. van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot in-hand manipulation with tactile features”, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015, pp. 121–127. DOI: 10.1109/HUMANOIDS.2015.7363524.

[60] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable reinforcement learning with autoencoders for tactile and visual data”, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 3928–3934. DOI: 10.1109/IROS.2016.7759578.

[61] A. Garcia-Garcia, B. S. Zapata-Impata, S. Orts-Escolano, P. Gil, and J. Garcia-Rodriguez, “Tactilegcn: A graph convolutional network for predicting grasp stability with tactile sensors”, in 2019 International Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8. DOI: 10. 1109/IJCNN.2019.8851984.

[62] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, Learning dexterous in-hand manipulation, 2019. arXiv: 1808 . 00177 [cs.LG].

[63] G. Cheng, E. Dean-Leon, F. Bergner, J. Rogelio Guadarrama Olvera, Q. Leboutet, and P. Mittendorfer, “A comprehensive realization of robot skin: Sensors, sensing, control, and applications”, Proceedings of the IEEE, vol. 107, no. 10, pp. 2034–2051, 2019. DOI: 10.1109/JPROC.2019.2933348.

[64] M. Kaboli and G. Cheng, “Robust tactile descriptors for discriminating objects from textural properties via artificial robotic skin”, IEEE Transactions on Robotics, vol. PP, pp. 1–19, Jul. 2018. DOI: 10.1109/TRO.2018.2830364.

[65] P. Mittendorfer and G. Cheng, “Humanoid multimodal tactile-sensing modules”, IEEE Transactions on robotics, vol. 27, no. 3, pp. 401–410, 2011.

[66] A. Schmitz, P. Maiolino, M. Maggiali, L. Natale, G. Cannata, and G. Metta, “Methods and technologies for the implementation of large- scale robot tactile sensors”, IEEE Transactions on Robotics, vol. 27, no. 3, pp. 389–400, 2011. DOI: 10.1109/TRO.2011.2132930.

[67] F. Bergner, E. Dean-Leon, J. R. Guadarrama-Olvera, and G. Cheng, “Evaluation of a large scale event driven robot skin”, IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4247–4254, 2019. DOI: 10.1109/ LRA.2019.2930493.

[68] J. M. Romano, T. Yoshioka, and K. J. Kuchenbecker, “Automatic filter design for synthesis of haptic textures from recorded acceleration data”, in 2010 IEEE International Conference on Robotics and Automation, 2010, pp. 1815–1821. DOI: 10.1109/ROBOT.2010.5509853.

[69] H. Culbertson, J. Unwin, and K. J. Kuchenbecker, “Modeling and rendering realistic textures from unconstrained tool-surface interactions”, IEEE Transactions on Haptics, vol. 7, no. 3, pp. 381–393, 2014. DOI: 10.1109/TOH.2014.2316797.

[70] Y. Massalim, Z. Kappassov, and A. Varol, “Deep vibro-tactile perception for simultaneous texture identification, slip detection, and speed estimation”, Sensors, vol. 20, p. 4121, Jul. 2020. DOI: 10.3390/s20154121.

[71] D. S. Chathuranga, Z. Wang, V. A. Ho, A. Mitani, and S. Hirai, “A biomimetic soft fingertip applicable to haptic feedback systems for texture identification”, in 2013 IEEE International Symposium on Haptic Audio Visual Environments and Games (HAVE), 2013, pp. 29–33.

[72] K. Takahashi and J. Tan, “Deep visuo-tactile learning: Estimation of material properties from images”, CoRR, vol. abs/1803.03435, 2018. arXiv: 1803 . 03435. [Online]. Available: http : / / arxiv . org / abs / 1803.03435.

[73] M. Polic, I. Krajacic, N. Lepora, and M. Orsag, “Convolutional autoencoder for feature extraction in tactile sensing”, IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3671–3678, Oct. 2019, ISSN: 2377-3774. DOI: 10.1109/LRA.2019.2927950.

[74] J. Abello, P. M. Pardalos, and M. G. Resende, Handbook of massive data sets. Springer, 2013, vol. 4.

[75] K. Sayood, Introduction to data compression. Morgan Kaufmann, 2017.

[76] B. Hollis, S. Patterson, and J. Trinkle, “Compressed sensing for tactile skins”, in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 150–157. DOI: 10.1109/ICRA.2016.7487128.

[77] ——, “Compressed learning for tactile object recognition”, IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1616–1623, Jul. 2018, ISSN: 2377-3766. DOI: 10.1109/LRA.2018.2800791.

[78] C. Liu, W. Huang, F. Sun, M. Luo, and C. Tan, “Lds-fcm: A linear dynamical system based fuzzy c-means method for tactile recognition”, IEEE Transactions on Fuzzy Systems, vol. 27, no. 1, pp. 72–83, 2019. DOI: 10.1109/TFUZZ.2018.2859184.

[79] H. Liu, J. Greco, X. Song, J. Bimbo, L. Seneviratne, and K. Althoefer, “Tactile image based contact shape recognition using neural network”, in 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Sep. 2012, pp. 138–143. DOI: 10.1109/MFI.2012.6343036.

[80] C.-H. Lin, J. A. Fishel, and G. Loeb, “Estimating point of contact , force and torque in a biomimetic tactile sensor with deformable skin”, 2013.

[81] M. Graña, M. Alonso, and A. Izaguirre, “A panoramic survey on grasping research trends and topics”, Cybernetics and Systems, vol. 50, no. 1, pp. 40–57, 2019. DOI: 10 . 1080 / 01969722 . 2018 . 1558013. [Online]. Available: https://doi.org/10.1080/01969722.2018.1558013.

[82] D. Prattichizzo, M. Otaduy, H. Kajimoto, and C. Pacchierotti, “Wearable and hand-held haptics”, IEEE Transactions on Haptics, vol. 12, no. 3, pp. 227–231, 2019. DOI: 10.1109/TOH.2019.2936736.

[83] C. Pacchierotti, L. Meli, F. Chinello, M. Malvezzi, and D. Prattichizzo, “Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems”, International Journal of Robotics Research. In Press, vol. 34, Oct. 2015. DOI: 10.1177/0278364915603135.

[84] C. Pacchierotti, F. Ongaro, F. van den Brink, C. Yoon, D. Prattichizzo, D. H. Gracias, and S. Misra, “Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance”, IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 290–306, 2018. DOI: 10.1109/TASE.2016.2635106.

[85] S. J. Biggs and M. A. Srinivasan, “Haptic interfaces”, in Human factors and ergonomics. Handbook of virtual environments: Design, implementation, and applications, Lawrence Erlbaum Associates Publishers, 2002, pp. 93–115.

[86] S. Kim, C. Kim, G. Yang, T. Yang, B. Han, S. Kang, and D. Kwon, “Small and lightweight tactile display(salt) and its application”, in World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2009, pp. 69–74. DOI: 10.1109/WHC.2009.4810820.

[87] M. Gabardi, M. Solazzi, D. Leonardis, and A. Frisoli, “A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features”, in 2016 IEEE Haptics Symposium (HAPTICS), 2016, pp. 140–146. DOI: 10.1109/HAPTICS.2016.7463168.

[88] S. Mun, S. Yun, S. Nam, S. K. Park, S. Park, B. J. Park, J. M. Lim, and K. Kyung, “Electro-active polymer based soft tactile interface for wearable devices”, IEEE Transactions on Haptics, vol. 11, no. 1, pp. 15–21, 2018.

[89] S. B. Schorr and A. M. Okamura, “Three-dimensional skin deformation as force substitution: Wearable device design and performance during haptic exploration of virtual environments”, IEEE Transactions on Haptics, vol. 10, no. 3, pp. 418–430, 2017. DOI: 10.1109/TOH.2017.2672969.

[90] M. Rahimi, F. Jiang, C. Ye, and Y. Shen, “Dynamic spatiotemporal pattern identification and analysis using a fingertip-based electro-tactile display array”, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 8132–8137. DOI: 10.1109/IROS40897.2019.8967906.

[91] E. M. Young and K. J. Kuchenbecker, “Implementation of a 6-dof parallel continuum manipulator for delivering fingertip tactile cues”, IEEE Transactions on Haptics, vol. 12, no. 3, pp. 295–306, 2019.

[92] A. M. Murray, R. L. Klatzky, and P. K. Khosla, “Psychophysical characterization and testbed validation of a wearable vibrotactile glove for telemanipulation”, Presence, vol. 12, no. 2, pp. 156–182, 2003. DOI: 10.1162/105474603321640923.

[93] H. Kajimoto, M. Suzuki, and Y. Kanno, “Hamsatouch: Tactile vision substitution with smartphone and electro-tactile display”, in Proceedings of the extended abstracts of the 32nd annual ACM conference on Human factors in computing systems, ACM, 2014, pp. 1273–1278.

[94] M. Rahimi, F. Jiang, and Y. Shen, “Non-linearity of skin properties in electrotactile applications: Identification and mitigation”, IEEE Access, vol. 7, pp. 169 844–169 852, 2019. DOI: 10.1109/ACCESS.2019.2955648.

[95] R. D. Howe, D. A. Kontarinis, and W. J. Peine, “Shape memory alloy actuator controller design for tactile displays”, in Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 4, 1995, 3540–3544 vol.4. DOI: 10.1109/CDC.1995.479133.

[96] P. S. Wellman, W. J. Peine, G. Favalora, and R. D. Howe, “Mechanical design and control of a high-bandwidth shape memory alloy tactile display”, in Experimental Robotics V, A. Casals and A. T. de Almeida, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 56–66, ISBN: 978-3-540-40920-5.

[97] S. Okumoto, F. Zhao, and H. Sawada, “Tactoglove presenting tactile sensations for intuitive gestural interaction”, in 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 1680–1685. DOI: 10.1109/ISIE.2012.6237343.

[98] N. Aiemsetthee and H. Sawada, “Presenting braille information on two fingers using vibratory patterns from an array of shape-memory alloys”, in 2020 13th International Conference on Human System Interaction (HSI), 2020, pp. 322–327.

[99] R. Scheibe, M. Moehring, and B. Froehlich, “Tactile feedback at the finger tips for improved direct interaction in immersive environments”, in 2007 IEEE Symposium on 3D User Interfaces, 2007. DOI: 10.1109/3DUI.2007.340784.

[100] D. Hwang, J. Lee, and K. Kim, “On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators”, Smart Materials and Structures, vol. 26, no. 10, p. 105 002, Sep. 2017. DOI: 10 . 1088 / 1361 - 665x / aa860d. [Online]. Available: https://doi.org/10.1088%2F1361-665x%2Faa860d.

[101] B. Lim, K. Kim, S. Oh, and D. Hwang, “Hapticube: A compact 5-dof finger-wearable tactile interface*”, in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5094–5100. DOI: 10.1109/IROS40897.2019.8967773.

[102] Y. Mizukami and H. Sawada, “Tactile information transmission by apparent movement phenomenon using shape-memory alloy device”, English, International Journal on Disability and Human Development, vol. 5, no. 3, pp. 277–284, Jan. 2006, ISSN: 2191-1231. DOI: 10.1515/IJDHD.2006.5.3.277.

[103] F. Chinello, M. Malvezzi, D. Prattichizzo, and C. Pacchierotti, “A modular wearable finger interface for cutaneous and kinesthetic interaction: Control and evaluation”, IEEE Transactions on Industrial Electronics, vol. 67, no. 1, pp. 706–716, 2020. DOI: 10.1109/TIE.2019.2899551.

[104] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embedded artificial skin for humanoid robots”, in Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on, IEEE, 2008, pp. 434–438.

[105] A. Geier, G. Yan, T. Pradhono Tito, S. Somlor, and S. Sugano, “Deep gru-ensembles for active tactile texture recognition with soft, distributed skin sensors in dynamic contact scenarios”, in 2020 IEEE/SICE International Symposium on System Integrations, IEEE, 2020.

[106] S. Funabashi, S. Ogasa, T. Isobe, T. Ogata, A. Schmitz, T. Tomo, and S. Sugano, “Variable in-hand manipulations for tactile-driven robot hand via cnn-lstm”, in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020, pp. 9472–9479.

[107] S. Funabashi, S. Morikuni, A. Geier, A. Schmitz, S. Ogasa, T. P. Torno, S. Somlor, and S. Sugano, “Object recognition through active sensing using a multi-fingered robot hand with 3d tactile sensors”, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2589–2595. DOI: 10.1109/IROS.2018.8594159.

[108] T. P. Tomo, W. K. Wong, A. Schmitz, H. Kristanto, A. Sarazin, L. Jamone, S. Somlor, and S. Sugano, “A modular, distributed, soft, 3-axis sensor system for robot hands”, in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016, pp. 454–460.

[109] T. P. Tomo, “Development of a compact, soft, distributed 3 - axis hall effect-based skin sensor: Uskin”, PhD thesis, Waseda University, Tokyo, Japan, Feb. 2019.

[110] H. Sawada, “Micro-vibration actuators driven by shape-memory alloy wires and its application to tactile displays”, in 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS), Dec. 2017, pp. 1–5. DOI: 10.1109/MHS.2017.8305184.

[111] S. Okamoto, H. Nagano, and Y. Yamada, “Psychophysical dimensions of tactile perception of textures”, IEEE Transactions on Haptics, vol. 6, no. 1, pp. 81–93, 2013.

[112] A. Geier, R. Tucker, S. Somlor, H. Sawada, and S. Sugano, “End-to-end tactile feedback loop: From soft sensor skin over deep gru-autoencoders to tactile stimulation”, IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6467–6474, 2020. DOI: 10.1109/LRA.2020.3012951.

[113] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN encoder- decoder for statistical machine translation”, CoRR, vol. abs/1406.1078, 2014. arXiv: 1406.1078. [Online]. Available: http://arxiv.org/abs/1406.1078.

[114] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, International Conference on Learning Representations, Dec. 2014.

[115] S. Lloyd, “Least squares quantization in pcm”, IEEE Trans. Inf. Theor., vol. 28, no. 2, pp. 129–137, Sep. 2006, ISSN: 0018-9448. DOI: 10.1109/TIT.1982.1056489. [Online]. Available: http://dx.doi.org/10. 1109/TIT.1982.1056489.

[116] Y. Raykov, A. Boukouvalas, F. Baig, and M. Little, “What to do when k-means clustering fails: A simple yet principled alternative algorithm”, PLOS ONE, vol. 11, e0162259, Sep. 2016. DOI: 10.1371/journal.pone.0162259.

[117] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding”, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’07, Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035, ISBN: 978-0-898716-24-5. [Online]. Available: http://dl.acm.org/citation.cfm?id=1283383.1283494.

[118] W. Taube Navaraj, C. García Núñez, D. Shakthivel, V. Vinciguerra, F. Labeau, D. H. Gregory, and R. Dahiya, “Nanowire fet based neural element for robotic tactile sensing skin”, Frontiers in Neuroscience, vol. 11, p. 501, 2017, ISSN: 1662-453X. DOI: 10.3389/fnins.2017.00501. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnins.2017.00501.

[119] G. T. Fechner, “Elemente der psychophysik”, in Elements of psychophysics, E. G. Howes D H; Boring, Ed. New York: Holt, Rinehart and Winston, 1966.

[120] D. B. JUDD, “Chromaticity sensibility to stimulus differences”, J. Opt. Soc. Am., vol. 22, no. 2, pp. 72–72, Feb. 1932. DOI: 10 .1364 / JOSA .22.000072. [Online]. Available: http://www.osapublishing.org/ abstract.cfm?URI=josa-22-2-72.

[121] G. Hamerly and J. Drake, “Accelerating lloyd’s algorithm for k-means clustering”, in Partitional Clustering Algorithms, M. E. Celebi, Ed. Cham: Springer International Publishing, 2015, pp. 41–78, ISBN: 978-3-319-09259-1. DOI: 10.1007/978-3-319-09259-1_2. [Online]. Available: https://doi.org/10.1007/978-3-319-09259-1_2.

[122] R. Tucker, “Development of an ai-driven thermo-electric actuator for heat flux generation in tactile displays”, Master’s thesis, Waseda University, Tokyo, Japan, Sep. 2020.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る