リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「生体計測応用システムのための有機光ダイオード」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

生体計測応用システムのための有機光ダイオード

ムハマド アフィク ビン ミスラン MUHAMAD AFFIQ BIN MISRAN 九州大学

2023.03.20

概要

九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Organic Photodiode for Biometric Application
System
ムハマド アフィク ビン ミスラン

https://hdl.handle.net/2324/6787637
出版情報:Kyushu University, 2022, 博士(工学), 課程博士
バージョン:
権利関係:

(様式3)Form 3





:MUHAMAD AFFIQ BIN MISRAN

Name

論 文 名 :Organic Photodiode for Biometric Application System
Title



(生体計測応用システムのための有機光ダイオード)



:甲
Category :



文 内 容 の 要
Thesis Summary



Recently, smartphone makers are increasingly opting for a bezel-less display, eliminating
the need for a fingerprint sensor on the home button. Thus, a thin-film fingerprint sensor within
the display area would be an appealing option, despite the development of ultrasonic and
thermal fingerprint sensors. Both have disadvantages: ultrasonic sensors are expensive for
large-area display applications, and thermal sensor pictures have a short lifetime. Therefore,
an optical fingerprint sensor based on solution-processed organic photodetectors (OPDs) could
be used as an alternative. The OPDs based on organic semiconductors are a potential class of
sensors that can provide these features. Their performance has increased rapidly in recent
years, demonstrating their potential as a supplementary technology to inorganic devices. Most
importantly, their solution processability allows for fabrication using industrial printing
processes. The significant parameter space of printing, along with the morphological and energy
requirements of OPDs, creates a slew of obstacles to the transition from lab-scale to applicable
production procedures.
However, there are still several issues related to the reliability of the optical fingerprint
sensor, especially identity spoofing. On that account, several studies have been done recently
to employ the Photoplethysmogram (PPG)-based authentication, which utilized the time-series
bio-signals for biometrics. From this perspective, this dissertation provides a fundamental
analysis of the optical simulation for human skin structure and fingertip structure at different
distances and positions between the light source and detector for PPG sensor application. This
analysis is done to understand the light propagation behavior in human tissues for better
detection of PPG sensors. The simulation results show that the reflectance-based PPG principle
has higher detection than the transmission-based principle. Plus, the reflectance-based is better
in terms of applicability to any body parts.
Then, this study proposed the fingerprint-on-display (FOD) applications based on OPD
devices for the biometric sensing application for the smartphone. This system uses the pinhole
imaging technique, well-known for its immense images and straightforward structure. It
combines optical sensors, which serve as image sensors, with a display for biometric fingerprint
scanning. There are a few options for integrating this feature across the display area. Compared
to inorganic photodiodes, OPDs benefit from large-area deposition capabilities, which can cover
the entire display sensing area. The light distribution from a pinhole onto the sensor pixel was
studied to observe the crosstalk and uniformity. Thus, recommending the critical parameters
to improve the system in the future.
The evaluation focuses on the optical crosstalk between adjacent pixels for the organic
image sensors using the interdigitated electrode structure. For applications requiring full-display
sensing, the shorter exciton diffusion length of organic semiconductors in the OPD can support
the high resolution of the organic image sensor. By adjusting the distance to determine the

minimum pixel pitch for the organic image sensor, we could demonstrate the photocurrent
diffusion from the exposed area to the buried electrodes. Unexpectedly, the observation shows
that the photocurrent diffusion was more critical than the anticipated exciton diffusion length,
even at 10 µm.

この論文で使われている画像

参考文献

1)

A. K. Jain, A. Ross and S. Prabhakar, IEEE Trans. Circuits Syst. Video Technol. 14 [1], 4

(2004).

2)

D. Bhattacharyya, R. Ranjan, F. Alisherov and C. Minkyu, Int. J. u- e- Service Sci. Tecnol.

2 [3], 82 (2009).

3)

D. Maltoni, D. Maio, A. K. Jain and S. Prabhakar, Eds., Handbook of Fingerprint

Recognition (Springer, London, 2009) 2nd ed.

4)

S. Z. Li and A. K. Jain, Handbook of Face Recognition (Springer, London New York, 2011)

2nd ed.

5)

A. K. Jain, A. Ross and S. Pankanti, in Proceeding of 2nd International Conference on

Audio- and Video-based Biometric Person Authentication (AVBPA) (Washington D.C.,

1999) pp. 1661.

6)

J. Daugman, IEEE Trans. Syst., Man, Cybern. B 37 [5], 1167 (2007).

7)

H. Ma, Z. Liu, S. Heo, J. Lee, K. Na, H. B. Jin, S. Jung, K. Park, J. J. Kim and F. Bien, IEEE

Sensors J. 16 [22], 8124 (2016).

8)

H. Hwang, H. Lee, B. Jang, H. Kim, T. Lee and Y. Chae, SID Symp. Dig. Tech. Pap. 48 [1],

838 (2017).

9)

X. Jiang, Y. Lu, H.-Y. Tang, J. M. Tsai, E. J. Ng, M. J. Daneman, B. E. Boser and D. A.

Horsley, Microsyst Nanoeng 3 [1], 17059 (2017).

10) S. Bae, Y. Ling, W. Lin and H. Zhu, SID Symp. Dig. Tech. Pap. 49 [1], 1017 (2018).

11) B. W. An, S. Heo, S. Ji, F. Bien and J.-U. Park, Nat Commun 9 [1], 2458 (2018).

12) G.-J. Jeon, S.-H. Lee, S. H. Lee, J.-B. Shim, J.-H. Ra, K. W. Park, H.-I. Yeom, Y. Nam, O.-K.

Kwon and S.-H. K. Park, Sci Rep 9 [1], 3216 (2019).

13) D. Tordera, B. Peeters, H. B. Akkerman, A. J. J. M. Breemen, J. Maas, S. Shanmugam, A.

J. Kronemeijer and G. H. Gelinck, Adv. Mater. Technol. 4 [11], 1900651 (2019).

14) K.-J. Baeg, M. Binda, D. Natali, M. Caironi and Y.-Y. Noh, Adv. Mater. 25 [31], 4267

(2013).

15) K. Kudo and T. Moriizumi, Appl. Phys. Lett. 39 [8], 609 (1981).

16) W. H. Lee, S. Y. Chuang, H. L. Chen, W. F. Su and C. H. Lin, Thin Solid Films 518 [24],

7450 (2010).

17) B. Hajduk, H. Bednarski, B. Jarząbek, H. Janeczek and P. Nitschke, Beilstein J.

Nanotechnol. 9, 1108 (2018).

89

18) L. Hrostea, M. Girtan, R. Mallet and L. Leontie, IOP Conf. Ser.: Mater. Sci. Eng. 374,

012015 (2018).

19) H. Maruhashi, T. Oku, A. Suzuki, T. Akiyama and Y. Yamasaki, in AIP Conference

Proceedings (Tsukuba-city, Ibaraki, Japan, 2015) Vol. 1649 pp. 89.

20) E. Zakhidov, M. Imomov, V. Quvondikov, S. Nematov, I. Tajibaev, A. Saparbaev, I. Ismail,

B. Shahid and R. Yang, Appl. Phys. A 125 [11], 803 (2019).

21) F. L. Khairulaman, C. C. Yap and M. H. Hj Jumali, Mater. Lett. 283, 128827 (2021).

22) T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi and T. Sakurai, IEEE

Trans. Electron Devices 52 [11], 2502 (2005).

23) G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen and G. H. Gelinck, Adv. Funct.

Mater. 30 [20], 1904205 (2020).

24) M. Biele, C. Montenegro Benavides, J. Hürdler, S. F. Tedde, C. J. Brabec and O. Schmidt,

Adv. Mater. Technol. 4 [1], 1800158 (2019).

25) M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet and L. Hirsch, Sci Rep 6 [1], 39201

(2016).

26) X. Zhou, D. Yang and D. Ma, Advanced Optical Materials 3 [11], 1570 (2015).

27) A. Pierre, I. Deckman, P. B. Lechêne and A. C. Arias, Adv. Mater. 27 [41], 6411 (2015).

28) C. Xie, T. Heumüller, W. Gruber, X. Tang, A. Classen, I. Schuldes, M. Bidwell, A. Späth, R.

H. Fink, T. Unruh, I. McCulloch, N. Li and C. J. Brabec, Nat Commun 9 [1], 5335 (2018).

29) F. J. M. Colberts, M. M. Wienk and R. A. J. Janssen, ACS Appl. Mater. Interfaces 9 [15],

13380 (2017).

30) J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma and H. Yan, Nat Energy 1 [2],

15027 (2016).

31) M. C. Scharber and N. S. Sariciftci, Progress in Polymer Science 38 [12], 1929 (2013).

32) Y. Huang, E. J. Kramer, A. J. Heeger and G. C. Bazan, Chem. Rev. 114 [14], 7006 (2014).

33) R. D. Jansen-van Vuuren, A. Armin, A. K. Pandey, P. L. Burn and P. Meredith, Adv.

Mater. 28 [24], 4766 (2016).

34) A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn and P. Meredith, Nat

Commun 6 [1], 6343 (2015).

35) B. Siegmund, A. Mischok, J. Benduhn, O. Zeika, S. Ullbrich, F. Nehm, M. Böhm, D.

Spoltore, H. Fröb, C. Körner, K. Leo and K. Vandewal, Nat Commun 8 [1], 15421 (2017).

36) S. Ullbrich, B. Siegmund, A. Mischok, A. Hofacker, J. Benduhn, D. Spoltore and K.

Vandewal, J. Phys. Chem. Lett. 8 [22], 5621 (2017).

90

37) Z. Tang, Z. Ma, A. Sánchez-Díaz, S. Ullbrich, Y. Liu, B. Siegmund, A. Mischok, K. Leo, M.

Campoy-Quiles, W. Li and K. Vandewal, Adv. Mater. 29 [33], 1702184 (2017).

38) M. R. Esopi, M. Calcagno and Q. Yu, Adv. Mater. Technol. 2 [8], 1700025 (2017).

39) N. Strobel, M. Seiberlich, R. Eckstein, U. Lemmer and G. Hernandez-Sosa, Flex. Print.

Electron. 4 [4], 043001 (2019).

40) S. A. Choulis, J. Nelson, Y. Kim, D. Poplavskyy, T. Kreouzis, J. R. Durrant and D. D. C.

Bradley, Appl. Phys. Lett. 83 [18], 3812 (2003).

41) G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte and R. Pacios, Organic

Electronics 9 [5], 847 (2008).

42) T. M. Clarke, C. Lungenschmied, J. Peet, N. Drolet and A. J. Mozer, Adv. Energy Mater. 5

[4], 1401345 (2015).

43) S. Kasap, J. B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O.

Bubon, A. Reznik, G. DeCrescenzo, K. S. Karim and J. A. Rowlands, Sensors 11 [5], 5112

(2011).

44) G. A. H. Wetzelaer, M. Kuik, M. Lenes and P. W. M. Blom, Appl. Phys. Lett. 99 [15],

153506 (2011).

45) Th. Martin and R. Landauer, Phys. Rev. B 45 [4], 1742 (1992).

46) I. K. Kim, J. H. Jo, J. (Brian) Lee and Y. J. Choi, Organic Electronics 57, 89 (2018).

47) G. H. Gelinck, A. Kumar, D. Moet, J.-L. van der Steen, U. Shafique, P. E. Malinowski, K.

Myny, B. P. Rand, M. Simon, W. Rütten, A. Douglas, J. Jorritsma, P. Heremans and R.

Andriessen, Organic Electronics 14 [10], 2602 (2013).

48) T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan and R. A. Street, Appl. Phys. Lett.

92 [21], 213303 (2008).

49) C. Zhao, J. Kanicki, A. C. Konstantinidis and T. Patel, Med. Phys. 42 [11], 6294 (2015).

50) T. Kamada, R. Hatsumi, K. Watanabe, S. Kawashima, M. Katayama, H. Adachi, T.

Ishitani, K. Kusunoki, D. Kubota and S. Yamazaki, J Soc Inf Display 27 [6], 361 (2019).

51) H. Akkerman, B. Peeters, A. Breemen, S. Shanmugam, L. Ugalde Lopez, D. Tordera, R.

Ketterij, E. Delvitto, R. Verbeek, P. Malinowski, T. Ke, F. De Roose, L. Moreno Hagelsieb,

I. Katsouras, A. J. Kronemeijer, E. Meulenkamp and G. Gelinck, J Soc Inf Display 29 [12],

935 (2021).

52) C. M. Lochner, Y. Khan, A. Pierre and A. C. Arias, Nat Commun 5 [1], 5745 (2014).

53) Y. Khan, D. Han, A. Pierre, J. Ting, X. Wang, C. M. Lochner, G. Bovo, N. Yaacobi-Gross, C.

Newsome, R. Wilson and A. C. Arias, Proc. Natl. Acad. Sci. U.S.A.

[ DOI:10.1073/pnas.1813053115].

91

54) M. Gao, L. Li and Y. Song, J. Mater. Chem. C 5 [12], 2971 (2017).

55) Y. Dong, Y. Zou, J. Song, Z. Zhu, J. Li and H. Zeng, Nano Energy 30, 173 (2016).

56) Z. Bao and X. Chen, Adv. Mater. 28 [22], 4177 (2016).

57) H. Lee, H. Ko and J. Lee, ICT Express 2 [4], 195 (2016).

58) E. D. Chan, M. M. Chan and M. M. Chan, Respiratory Medicine 107 [6], 789 (2013).

59) T. Tamura, Y. Maeda, M. Sekine and M. Yoshida, Electronics 3 [2], 282 (2014).

60) A. Caizzone, A. Boukhayma and C. Enz, IEEE Electron Device Lett. 40 [11], 1828 (2019).

61) A. Bilgaiyan, F. Elsamnah, H. Ishidai, C.-H. Shim, M. A. B. Misran, C. Adachi and R.

Hattori, ACS Appl. Electron. Mater. 2 [5], 1280 (2020).

62) C.-Y. Huang, M.-C. Chan, C.-Y. Chen and B.-S. Lin, Sensors 14 [9], 17586 (2014).

63) F. Elsamnah, A. Bilgaiyan, M. Affiq, C.-H. Shim, H. Ishidai and R. Hattori, Biosensors 9

[3], 87 (2019).

64) M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee and D. T.

Delpy, Phys. Med. Biol. 38 [12], 1859 (1993).

65) J. L. Reuss and D. Siker, J Clin Monit Comput 18 [4], 289 (2004).

66) V. A. Peris and S. Hu, J. Phys.: Conf. Ser. 85, 012027 (2007).

67) S. Chatterjee and P. Kyriacou, Sensors 19 [4], 789 (2019).

68) K.-C. Huang, C.-L. Chang, H.-C. Chang and C.-H. Chang, in 2012 IEEE International

Instrumentation and Measurement Technology Conference Proceedings (IEEE, Graz,

Austria, 2012) pp. 1246.

69) V. V. Tuchin, J. biomed. photonics eng. 1 [2], 98 (2015).

70) V. Tuchin, J. biomed. photonics eng. 2 [3], 030201 (2016).

71) I. V. Meglinsky and S. J. Matcher, Med. Biol. Eng. Comput. 39 [1], 44 (2001).

72) I. V. Meglinski and S. J. Matcher, Computer Methods and Programs in Biomedicine 70

[2], 179 (2003).

73) J. L. Latham and S. N. Martin, Am Fam Physician 89 [12], 956 (2014).

74) L. Jazayeri, J. Q. Klausner and J. Chang, Plast Reconstr Surg 132 [5], 1207 (2013).

75) C. Y. Chia and T. Nassif, Rev. Bras. Cir. Plást. 26 [4], 714 (2011).

76) C. Y. Chia and T. Nassif, Rev. Bras. Cir. Plást. [ DOI:10.5935/2177-1235.2015RBCP0185].

77) A. N. Bashkatov, E. A. Genina and V. V. Tuchin, J. Innov. Opt. Health Sci. 04 [01], 9

(2011).

78) T. Lister, P. A. Wright and P. H. Chappell, J Biomed Opt 17 [9], 90901 (2012).

79) N. Bosschaart, G. J. Edelman, M. C. G. Aalders, T. G. van Leeuwen and D. J. Faber, Lasers

Med Sci 29 [2], 453 (2014).

92

80) Y. Kwon, M. Kim, S. Park, M. Jeong, S. M. Lee, S. H. Lee, W. H. Lee, Y. K. Choi and J. Y.

Lee, in 2020 IEEE Symposium on VLSI Circuits (IEEE, Honolulu, HI, USA, 2020) pp. 1.

81) C. Peng, M. Chen, H. Wang, J. Shen and X. Jiang, IEEE Sensors J. 20 [19], 11221 (2020).

82) C. Peng, M. Chen and X. Jiang, IEEE Sensors J. 21 [6], 7412 (2021).

83) Y. Qin, H. Wang and Y. Liu, SID Symposium Digest of Technical Papers 49 [1], 1604

(2018).

84) D. Tordera, B. Peeters, E. Delvitto, S. Shanmugam, J. Maas, J. Riet, R. Verbeek, R. Laar,

T. Bel, G. Haas, L. Ugalde, A. Breemen, I. Katsouras, A. J. Kronemeijer, H. Akkerman, E.

Meulenkamp and G. Gelinck, J Soc Inf Display 28 [5], 381 (2020).

85) W.-F. Zhou, L.-Q. Chen, Y.-L. Sun, L. Shi, Z. Liu, F. Guan and D. Wang, SID Symposium

Digest of Technical Papers 49 [1], 1014 (2018).

86) Y. Zeng, F. Lu, Q. Yao, H. Yu, Q. Zhang and X. Su, SID Symposium Digest of Technical

Papers 52 [S1], 49 (2021).

87) A. K. Jain, Y. Chen and M. Demirkus, IEEE Trans. Pattern Anal. Mach. Intell. 29 [1], 15

(2007).

88) National Institute of Standards and Technology, American national standard for

information systems. NIST SP 500-245 (National Institute of Standards and Technology,

Gaithersburg, MD, 2000) 0 ed.

89) J. M. Libert, S. Orandi and J. D. Grantham, Comparison of the WSQ and JPEG 2000

image compression algorithms on 500 ppi fingerprint imagery NIST IR 7781 (National

Institute of Standards and Technology, Gaithersburg, MD, 2012) 0 ed.

90) J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett. 68

[22], 3120 (1996).

91) D. E. Markov, J. C. Hummelen, P. W. M. Blom and A. B. Sieval, Phys. Rev. B 72 [4],

045216 (2005).

92) W. A. Luhman and R. J. Holmes, Adv. Funct. Mater. 21 [4], 764 (2011).

93) O. V. Mikhnenko, P. W. M. Blom and T.-Q. Nguyen, Energy Environ. Sci. 8 [7], 1867

(2015).

94) B. A. Gregg, J. Sprague and M. W. Peterson, J. Phys. Chem. B 101 [27], 5362 (1997).

95) H. Najafov, B. Lee, Q. Zhou, L. C. Feldman and V. Podzorov, Nature Mater 9 [11], 938

(2010).

96) A. R. Newmark and U. Stimming, Journal of Electroanalytical Chemistry and Interfacial

Electrochemistry 204 [1–2], 197 (1986).

97) A. R. Newmark and U. Stimming, Electrochimica Acta 32 [8], 1217 (1987).

93

98) S. M. Menke and R. J. Holmes, Energy Environ. Sci. 7 [2], 499 (2014).

99) L. Onsager, The Journal of Chemical Physics 2 [9], 599 (1934).

100) T. Offermans, S. C. J. Meskers and R. A. J. Janssen, The Journal of Chemical Physics 119

[20], 10924 (2003).

101) I. Montanari, A. F. Nogueira, J. Nelson, J. R. Durrant, C. Winder, M. A. Loi, N. S. Sariciftci

and C. Brabec, Appl. Phys. Lett. 81 [16], 3001 (2002).

102) A. M. Goodman and A. Rose, Journal of Applied Physics 42 [7], 2823 (1971).

103) A. Liu, S. Zhao, S.-B. Rim, J. Wu, M. Könemann, P. Erk and P. Peumans, Adv. Mater. 20

[5], 1065 (2008).

94

APPENDIX A

OPTICAL RAY TRACING SIMULATION

A1: Unfiltered ray tracing for the skin model.

95

A2: (Front-view) Unfiltered ray tracing for the finger model based on

transmission-based system.

A3: (Side-view) Unfiltered ray tracing for the finger model based on

transmission-based system.

96

A4: (Front-view) Unfiltered ray tracing for the finger model based on

reflection-based system.

A5: (Side-view) Unfiltered ray tracing for the finger model based on

reflection-based system.

97

APPENDIX B

LAYOUT DESIGN

B1: Overview of the photomask for the IDE OPD devices.

98

B2: Closed-up view at area I from A1. Area II shows the single OPD

device for the verification purpose. Area III shows the IDE OPDs with

the most left is the perfectly aligned between the exposed area and

opening window. The most right in area III shows the IDE OPDs with

100% shifted to the right side exposing the boundaries of the covered

electrodes. Conversely, in area IV the most right is the perfectly

aligned device structure and the most left is 100% shifted to the left.

99

B3: Overview of the single OPD device.

B4: Overview of the IDE OPDs with perfectly aligned between

opening window and exposed electrodes for the smallest feature size

based on Table 5.1.

100

EE

CE

B5: Closed-up view at the exposed electrodes (EE) and covered

electrodes (CE).

B6: Overview of the IDE OPDs for largest feature size based on

Table 5.1 with the opening windows were 100% shifted to the right.

101

Opening window

EE

CE

B7: Closed-up view at the electrodes which 100% shifted to the right

for the largest feature size used for the device structure.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る