リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Epitaxial Growth and Electronic Properties of Single- and Few-Layer FeBr₂ on Bi(111)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Epitaxial Growth and Electronic Properties of Single- and Few-Layer FeBr₂ on Bi(111)

Terakawa, Shigemi Hatta, Shinichiro Okuyama, Hiroshi Aruga, Tetsuya 京都大学 DOI:10.1021/acs.jpcc.3c02188

2023.08.03

概要

Magnetic van der Waals (vdW) materials have attracted considerable attention in recent years because of their future spintronics applications. 3d Transition metal dihalides are a promising class of materials to realize two-dimensional vdW magnets with intriguing magnetic and electronic properties. We report the epitaxial growth of (0001)-oriented FeBr2 films from the monolayer by molecular beam epitaxy on the Bi(111) surface. The atomic structure was confirmed to be identical to that of the bulk FeBr₂ crystal by dynamical low-energy electron diffraction analysis. Angle-resolved photoelectron spectroscopy revealed that the topmost valence band composed of Fe 3d orbitals is located at 2.2 eV below the Fermi level, showing that the FeBr₂ films are insulating down to the monolayer.

この論文で使われている画像

参考文献

Article

The present work was financially supported by JSPS

KAKENHI (Grant Nos. 19H01825, 20J10847, 21K03432).

The authors thank the Supercomputer Center, the Institute for

Solid State Physics, the University of Tokyo (Project No.

2023-Ba-0031) for the use of the facilities, and Center for

Computational Materials Science, Institute for Materials

Research, Tohoku University for the use of MASAMUNEIMR (Project No. 2212SC0005).

(1) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater.

2007, 6, 183−191.

(2) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K.

S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys.

2009, 81, 109−162.

(3) Burch, K. S.; Mandrus, D.; Park, J.-G. Magnetism in twodimensional van der Waals materials. Nature 2018, 563, 47−52.

(4) Gong, C.; Zhang, X. Two-dimensional magnetic crystals and

emergent heterostructure devices. Science 2019, 363, No. 706.

(5) Li, H.; Ruan, S.; Zeng, Y.-J. Intrinsic van der Waals magnetic

materials from bulk to the 2D limit: new frontiers of spintronics. Adv.

Mater. 2019, 31, No. 1900065.

(6) Wang, M. C.; Huang, C. C.; Cheung, C. H.; Chen, C. Y.; Tan, S.

G.; Huang, T. W.; Zhao, Y.; Zhao, Y.; Wu, G.; Feng, Y. P.; et al.

Prospects and opportunities of 2D van der Waals magnetic systems.

Ann. Phys. 2020, 532, No. 1900452.

(7) Cortie, D. L.; Causer, G. L.; Rule, K. C.; Fritzsche, H.;

Kreuzpaintner, W.; Klose, F. Two-dimensional magnets: forgotten

history and recent progress towards spintronic applications. Adv.

Funct. Mater. 2020, 30, No. 1901414.

14904

https://doi.org/10.1021/acs.jpcc.3c02188

J. Phys. Chem. C 2023, 127, 14898−14905

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

(28) Feng, Y.; Wu, X.; Han, J.; Gao, G. Robust half-metallicities and

perfect spin transport properties in 2D transition metal dichlorides. J.

Mater. Chem. C 2018, 6, 4087−4094.

(29) Kovaleva, E. A.; Melchakova, I.; Mikhaleva, N. S.; Tomilin, F.

N.; Ovchinnikov, S. G.; Baek, W.; Pomogaev, V. A.; Avramov, P.;

Kuzubov, A. A. The role of strong electron correlations in

determination of band structure and charge distribution of transition

metal dihalide monolayers. J. Phys. Chem. Solids 2019, 134, 324−332.

(30) Botana, A. S.; Norman, M. R. Electronic structure and

magnetism of transition metal dihalides: Bulk to monolayer. Phys. Rev.

Mater. 2019, 3, No. 044001.

(31) Lu, D.; Liu, L.; Ma, Y.; Yang, K.; Wu, H. A unique electronic

state in a ferromagnetic semiconductor FeCl2 monolayer. J. Mater.

Chem. C 2022, 10, 8009−8014.

(32) Yao, Q.; Li, J.; Liu, Q. Fragile symmetry-protected half

metallicity in two-dimensional van der Waals magnets: A case study of

monolayer FeCl2. Phys. Rev. B 2021, 104, No. 035108.

(33) Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa,

Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T.

Nanofilm allotrope and phase transformation of ultrathin Bi film on

Si(111)-7×7. Phys. Rev. Lett. 2004, 93, No. 105501.

(34) Yaginuma, S.; Nagao, T.; Sadowski, J. T.; Pucci, A.; Fujikawa,

Y.; Sakurai, T. Surface pre-melting and surface flattening of Bi

nanofilms on Si(1 1 1)-7 × 7. Surf. Sci. 2003, 547, L877−L881.

(35) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B

1994, 50, No. 17953.

(36) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the

projector augmented-wave method. Phys. Rev. B 1999, 59, No. 1758.

(37) Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid

metals. Phys. Rev. B 1993, 47, No. 558(R).

(38) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab

initio total-energy calculations using a plane-wave basis set. Phys. Rev.

B 1996, 54, No. 11169.

(39) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy

calculations for metals and semiconductors using a plane-wave basis

set. Comput. Mater. Sci. 1996, 6, 15−50.

(40) Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density

functionals applied to solids. Phys. Rev. B 2011, 83, No. 195131.

(41) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient

approximation made simple. Phys. Rev. Lett. 1996, 77, No. 3865.

(42) Haberecht, J.; Borrmann, H.; Kniep, R. Refinement of the

crystal structure of iron dibromide, FeBr2. Z. Kristallogr. - New Cryst.

Struct. 2001, 216, 510.

(43) Momma, K.; Izumi, F. VESTA 3 for three-dimensional

visualization of crystal, volumetric and morphology data. J. Appl.

Crystallogr. 2011, 44, 1272−1276.

(44) Barbieri, A.; Hove, M. A. V. Symmetrized Automated Tensor

Leed (SATLEED) package available from M. A. Van Hove.

(45) Pendry, J. B. Reliability factors for LEED calculations. J. Phys.

C: Solid State Phys. 1980, 13, 937−944.

(46) Yeh, J. J.; Lindau, I. Atomic subshell photoionization cross

sections and asymmetry parameters: 1 ≤ Z ≤ 103. At. Data Nucl. Data

Tables 1985, 32, 1−155.

(47) Rusz, J.; Sargolzaei, M. Spin and orbital magnetism of FeBr2: a

density functional theory study. J. Phys.: Condens. Matter 2008, 20,

No. 025217.

(48) Kundu, A. K.; Liu, Y.; Petrovic, C.; Valla, T. Valence band

electronic structure of the van der Waals ferromagnetic insulators: VI3

and CrI3. Sci. Rep. 2020, 10, No. 15602.

(49) De Vita, A.; Nguyen, T. T. P.; Sant, R.; Pierantozzi, G. M.;

Amoroso, D.; Bigi, C.; Polewczyk, V.; Vinai, G.; Nguyen, L. T.; Kong,

T.; et al. Influence of orbital character on the ground state electronic

properties in the van der Waals transition metal iodides VI3 and CrI3.

Nano Lett. 2022, 22, 7034−7041.

(50) Jiang, W.; Yang, Z.; Li, Y.; Wang, G.; Jing, Q.; Guan, D.; Ma, J.;

Zhang, W.; Qian, D. Spin-split valence bands of the ferromagnetic

insulator Cr2Ge2Te6 studied by angle-resolved photoemission spectroscopy. J. Appl. Phys. 2020, 127, No. 023901.

Article

(51) Koroteev, Y. M.; Bihlmayer, G.; Gayone, J. E.; Chulkov, E. V.;

Blügel, S.; Echenique, P. M.; Hofmann, P. Strong spin-orbit splitting

on Bi surfaces. Phys. Rev. Lett. 2004, 93, No. 046403.

Recommended by ACS

Imaging Nucleation and Propagation of Pinned Domains in

Few-Layer Fe5–x GeTe2

Michael Högen, Mete Atatüre, et al.

AUGUST 29, 2023

ACS NANO

READ

Room-Temperature and Tunable Tunneling

Magnetoresistance in Fe3GaTe2-Based 2D van der Waals

Heterojunctions

Wen Jin, Haixin Chang, et al.

JULY 19, 2023

ACS APPLIED MATERIALS & INTERFACES

READ

Layered van der Waals Chalcogenides FeAl2Se4, MnAl2S4,

and MnAl2Se4: Atomically Thin Triangular Arrangement of

Transition-Metal Atoms

Valeriy Yu. Verchenko, Andrei V. Shevelkov, et al.

MAY 02, 2023

INORGANIC CHEMISTRY

READ

Visualizing the Effect of Oxidation on Magnetic Domain

Behavior of Nanoscale Fe3GeTe2 for Applications in

Spintronics

Yue Li, Charudatta Phatak, et al.

MARCH 10, 2023

ACS APPLIED NANO MATERIALS

READ

Get More Suggestions >

14905

https://doi.org/10.1021/acs.jpcc.3c02188

J. Phys. Chem. C 2023, 127, 14898−14905

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る