リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A molecular dynamics study of thermal boundary resistance over solid interfaces with an extremely thin liquid film」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A molecular dynamics study of thermal boundary resistance over solid interfaces with an extremely thin liquid film

Xiao Liu Donatas Surblys Yoshiaki Kawagoe Abdul Rafeq Bin Saleman Hiroki Matsubara Gota Kikugawa Taku Ohara 東北大学 DOI:10.1016/j.ijheatmasstransfer.2019.118949

2020.02

概要

We investigated the characteristics of thermal energy transport over two solid surfaces joined via an extremely thin liquid film where the liquid molecules are under the influence of both solid surfaces simultaneously. Using non-equilibrium molecular dynamics simulations, the thermal resistance between the two solid surfaces was examined for different thickness of liquid film and different alignment (in-plane orientation) of the two solid surfaces. Both solid surfaces were the (110) plane of face centered cubic lattice, and two different combinations of alignment, i.e., either parallel or crossed to each other, were examined. The thermal resistance between the solid surfaces was decomposed into the thermal boundary resistance at the solid-liquid interfaces and the thermal resistance of the liquid film, which were analyzed separately. The results showed that when the liquid film thickness is equal or less to four molecular dimensions, both the film thickness and the surface alignment have significant influence on the thermal resistance. Specifically, when the liquid film is a single layer of liquid molecules (LLM), the thermal resistance between solid surfaces is extremely low when compared with the cases of more LLM, and increases with increasing liquid density. In contrast, when the film is composed of two or three LLM, the solid-liquid interfacial thermal resistance decreases with increasing liquid density, and a discontinuous increase occurs as the number of LLM changes from two to three. As for the effect of surface alignment, it was found that the parallel surface alignment gives a lower thermal resistance than the crossed surface alignment.

この論文で使われている画像

参考文献

[1] T. Ohara, D. Torii, Molecular dynamics study of thermal phenomena in an ultrathin liquid film sheared between solid surfaces: The influence of the crystal plane on energy and momentum transfer at solid-liquid interfaces, J. Chem. Phys. 122 (2005). doi:10.1063/1.1902950.

[2] D. Torii, T. Ohara, K. Ishida, Molecular-Scale Mechanism of Thermal Resistance at the Solid-Liquid Interfaces: Influence of Interaction Parameters Between Solid and Liquid Molecules, J. Heat Transfer. 132 (2010) 012402. doi:10.1115/1.3211856.

[3] A.R. bin Saleman, H.K. Chilukoti, G. Kikugawa, M. Shibahara, T. Ohara, A molecular dynamics study on the thermal transport properties and the structure of the solid–liquid interfaces between face centered cubic (FCC) crystal planes of gold in contact with linear alkane liquids, Int. J. Heat Mass Transf. 105 (2017) 168–179. doi:10.1016/j.ijheatmasstransfer.2016.09.069.

[4] Z. Liang, H.L. Tsai, Effect of molecular film thickness on thermal conduction across solid-film interfaces, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. (2011). doi:10.1103/PhysRevE.83.061603.

[5] Z. Liang, H.L. Tsai, Thermal conductivity of interfacial layers in nanofluids, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 83 (2011) 1–8. doi:10.1103/PhysRevE.83.041602.

[6] X. Wang, P. Cheng, X. Quan, Molecular dynamics simulations of thermal boundary resistances in a liquid between two solid walls separated by a nano gap, Int. Commun. Heat Mass Transf. 77 (2016) 183–189. doi:10.1016/j.icheatmasstransfer.2016.08.006.

[7] S. Murad, I.K. Puri, Molecular simulation of thermal transport across hydrophilic interfaces, Chem. Phys. Lett. 467 (2008) 110–113. doi:10.1016/j.cplett.2008.10.068.

[8] M. Barisik, A. Beskok, Boundary treatment effects on molecular dynamics simulations of interface thermal resistance, J. Comput. Phys. 231 (2012) 7881– 7892. doi:10.1016/j.jcp.2012.07.026.

[9] K.M. Issa, A.A. Mohamad, Lowering liquid-solid interfacial thermal resistance with nanopatterned surfaces, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 85 (2012) 3–7. doi:10.1103/PhysRevE.85.031602.

[10] B.H. Kim, A. Beskok, T. Cagin, Molecular dynamics simulations of thermal resistance at the liquid-solid interface, J. Chem. Phys. 129 (2008). doi:10.1063/1.3001926.

[11] H.J. Castejón, The effect of point defects on the scattering and trapping of rare gases on metallic surfaces, Surf. Sci. 564 (2004) 165–172. doi:10.1016/j.susc.2004.06.176.

[12] E. Ruckenstein, H. Liu, Self-Diffusion in Gases and Liquids, Ind. Eng. Chem. Res. 36 (1997) 3927–3936. doi:10.1021/ie9701332.

[13] P. Spijker, A.J. Markvoort, S. V. Nedea, P.A.J. Hilbers, Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 81 (2010) 1–15. doi:10.1103/PhysRevE.81.011203.

[14] O. Yenigun, M. Barisik, Effect of nano-film thickness on thermal resistance at water/silicon interface, Int. J. Heat Mass Transf. 134 (2019) 634–640. doi:10.1016/J.IJHEATMASSTRANSFER.2019.01.075.

[15] N. Shenogina, R. Godawat, P. Keblinski, S. Garde, How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces, Phys. Rev. Lett. 102 (2009) 156101. doi:10.1103/PhysRevLett.102.156101.

[16] M. Barisik, A. Beskok, Temperature dependence of thermal resistance at the water/silicon interface, Int. J. Therm. Sci. 77 (2014) 47–54. doi:10.1016/J.IJTHERMALSCI.2013.10.012.

[17] M. Lupkowski, F. Van Swol, Computer simulation of fluids interacting with fluctuating walls, J. Chem. Phys. 93 (1990) 737–745. doi:10.1063/1.459524.

[18] B.D. Todd, D.J. Evans, P.J. Daivis, Pressure tensor for inhomogeneous fluids, Phys. Rev. E. 52 (1995) 1627–1638. doi:10.1103/PhysRevE.52.1627.

[19] T. Ohara, Intermolecular energy transfer in liquid water and its contribution to heat conduction: A molecular dynamics study, J. Chem. Phys. 111 (1999) 6492– 6500. doi:10.1063/1.480025.

[20] A. Singh, E.B. Tadmor, Thermal parameter identification for non-Fourier heat transfer from molecular dynamics, J. Comput. Phys. 299 (2015) 667–686. doi:10.1016/J.JCP.2015.07.008.

[21] Z. Liang, M. Hu, Tutorial : Determination of thermal boundary resistance by molecular dynamics simulations, 191101 (2018). doi:10.1063/1.5027519.

[22] J.C.G. Calado, U.V. Mardolcar, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, The thermal conductivity of liquid argon, Phys. A Stat. Mech. Its Appl. 143 (1987) 314–325. doi:10.1016/0378-4371(87)90071-9.

[23] A.J.H. McGaughey, M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon, Int. J. Heat Mass Transf. 47 (2004) 1783–1798. doi:10.1016/J.IJHEATMASSTRANSFER.2003.11.002.

[24] S.C. Maroo, J.N. Chung, Molecular dynamic simulation of platinum heater and associated nano-scale liquid argon film evaporation and colloidal adsorption characteristics, J. Colloid Interface Sci. 328 (2008) 134–146. doi:10.1016/J.JCIS.2008.09.018.

[25] K. Hyżorek, K. V. Tretiakov, Thermal conductivity of liquid argon in nanochannels from molecular dynamics simulations, J. Chem. Phys. 144 (2016) 194507. doi:10.1063/1.4949270.

[26] H. Bao, J. Chen, X. Gu, B. Cao, A review of Simulation Methods in Micro/Nanoscale Heat Conduction, ES Energy Environ. (2018). doi:10.30919/esee8c149.

[27] T. Sun, J. Xian, H. Zhang, Z. Zhang, Y. Zhang, Two-phase thermodynamic model for computing entropies of liquids reanalyzed, J. Chem. Phys. 147 (2017). doi:10.1063/1.5001798.

[28] C.U. Gonzalez-Valle, B. Ramos-Alvarado, Spectral mapping of thermal transport across SiC-water interfaces, Int. J. Heat Mass Transf. 131 (2019) 645–653. doi:10.1016/j.ijheatmasstransfer.2018.11.101.

[29] K. Sääskilahti, J. Oksanen, J. Tulkki, S. Volz, Spectral mapping of heat transfer mechanisms at liquid-solid interfaces, Phys. Rev. E. 93 (2016) 1–8. doi:10.1103/PhysRevE.93.052141.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る