リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the roles of C-type lectin receptors in the homeostasis of the immune system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the roles of C-type lectin receptors in the homeostasis of the immune system

Han Wei 東京理科大学 DOI:info:doi/10.20604/00003625

2021.06.09

概要

Part I Functional roles of Clec12B in colon tumors and colitis
Among the CLRs (C-type lectin receptors) mapped in the Dectin-1 cluster, Clec12B (Ctype lectin domain family 12 member B) is poorly understood among other CLRs. Clec12B is expressed on dendritic cells and macrophages. However, the ligands of Clec12B still remain to be elucidated. Previously, Dectin-1, one of CLRs, is suggested to be involved in the development of colitis and colon tumors by regulating intestinal commensal microbiota. But the functional roles of Clec12B are still unclear. In this study, I showed that Clec12B can alleviate the development of colitis and colon tumors. Clec12b–/– mice were more sensitive to DSS-induced colitis and AOM-DSS induced colon tumors. Data showed that microbiota from Clec12b–/– mice can aggravate colitis. Using germ-free mice and 16S rRNA sequencing, I have identified that the population of A.muciniphila was greatly reduced in Clec12b–/–mice, which can alleviate intestinal inflammation. Furthermore, I found that intestinal mucin (MUC2) was decreased in Clec12b–/– mice compared with WT mice. Since A. muciniphila is reported to utilize intestinal mucin as the only carbon source, it is possible that A. muciniphila growth was suppressed because of the deficiency of MUC2. Taken together, these observations suggest that Clec12B plays an important role in regulating immune responses of the colon by modifying gut microbiota.

Part II OVA-induced airway inflammation is ameliorated in Dectin-1–deficient mice, in which pulmonary Treg cells are expanded through modification of intestinal commensal bacteria
Dectin-1 (gene symbol: Clec7a) is one of the best known CLRs which mainly expressed in Macrophages and Dendritic cells. Tang et al. reported recently that Dectin-1 is also important for the homeostasis of the intestinal immune system by controlling regulatory T (Treg) cell differentiation through regulation of intestinal microbiota. However, it is not clear whether intestinal immune conditions affect immune responses in other organs. I examined the effects of Dectin-1 deficiency on allergic airway inflammation (AAI). OVA-induced AAI was attenuated in Clec7a–/– mice. Treatment with antibiotics, but not an antifungal agent, decreased the abundance of intestinal Treg cells and aggravated the symptoms of AAI in Clec7a–/– mice. Transplantation of gut microbiota from Clec7a–/– mice into antibiotic-treated hosts increased the abundance of intestinal Treg cells and ameliorated AAI. Over-colonization by Lactobacillus murinus, a Dectin-1 signaling regulated commensal bacterium, also promoted expansion of Treg cells in the colon and suppressed lung inflammation. Depletion of Treg cells with anti-CD25 antibody eliminated the phenotypic differences between WT and Clec7a–/– mice in OVA-induced AAI. These observations suggest that inhibition of Dectin-1 signaling ameliorates AAI by increasing the abundance of Treg cells in lungs through modification of intestinal commensal bacteria, suggesting a role for commensal microbiota in regulating inflammation in organs other than the intestine.

Thus, my studies suggest that both Dectin-1 and Clec12B are important for the intestinal immune homeostasis by regulating microbiota composition in the intestine.

参考文献

1. A. N. Zelensky, J. E. Gready, The C-type lectin-like domain superfamily. FEBS J 272, 6179-6217 (2005).

2. G. D. Brown, J. A. Willment, L. Whitehead, C-type lectins in immunity and homeostasis. Nat Rev Immunol 18, 374-389 (2018).

3. C. Tang, Y. Makusheva, H. Sun, W. Han, Y. Iwakura, Myeloid C-type lectin receptors in skin/mucoepithelial diseases and tumors. J Leukoc Biol 106, 903-917 (2019).

4. R. A. Drummond, G. D. Brown, The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 14, 392-399 (2011).

5. S. Saijo, Y. Iwakura, Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol 23, 467-472 (2011).

6. N. Fujikado et al., Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat Med 14, 176-180 (2008).

7. S. C. Hoffmann et al., Identification of CLEC12B, an inhibitory receptor on myeloid cells. J Biol Chem 282, 22370-22375 (2007).

8. S. Saijo et al., Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8, 39-46 (2007).

9. N. Gour et al., Dysregulated invertebrate tropomyosin-dectin-1 interaction confers susceptibility to allergic diseases. Sci Immunol 3, (2018).

10. D. S. Lima-Junior, T. W. P. Mineo, V. L. G. Calich, D. S. Zamboni, Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production To Trigger Inflammasome Assembly and Restriction of Parasite Replication. J Immunol 199, 2055-2068 (2017).

11. D. Daley et al., Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med 23, 556-567 (2017).

12. I. D. Iliev et al., Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314-1317 (2012).

13. C. Tang et al., Inhibition of Dectin-1 Signaling Ameliorates Colitis by Inducing Lactobacillus-Mediated Regulatory T Cell Expansion in the Intestine. Cell Host Microbe 18, 183-197 (2015).

14. T. Kamiya et al., beta-Glucans in food modify colonic microflora by inducing antimicrobial protein, calprotectin, in a Dectin-1-induced-IL-17F-dependent manner. Mucosal Immunol 11, 763-773 (2018).

15. Y. Furusawa et al., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446-450 (2013).

16. C. Tang et al., Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol 19, 755-765 (2018).

17. T. B. Geijtenbeek, S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9, 465-479 (2009).

18. M. Shiokawa, S. Yamasaki, S. Saijo, C-type lectin receptors in anti-fungal immunity. Curr Opin Microbiol 40, 123-130 (2017).

19. M. Martinez-Lopez et al., Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity 50, 446-461 e449 (2019).

20. Y. L. Lightfoot et al., SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J 34, 881-895 (2015).

21. D. Ding, Y. Yao, S. Zhang, C. Su, Y. Zhang, C-type lectins facilitate tumor metastasis. Oncol Lett 13, 13-21 (2017).

22. E. Nieto-Pelegrin et al., Porcine CLEC12B is expressed on alveolar macrophages and blood dendritic cells. Dev Comp Immunol 111, 103767 (2020).

23. K. Tone, M. H. T. Stappers, J. A. Willment, G. D. Brown, C-type lectin receptors of the Dectin-1 cluster: Physiological roles and involvement in disease. Eur J Immunol 49, 2127-2133 (2019).

24. J. Torres, S. Mehandru, J. F. Colombel, L. Peyrin-Biroulet, Crohn's disease. Lancet 389, 1741-1755 (2017).

25. I. Ordas, L. Eckmann, M. Talamini, D. C. Baumgart, W. J. Sandborn, Ulcerative colitis. Lancet 380, 1606-1619 (2012).

26. J. Ni, G. D. Wu, L. Albenberg, V. T. Tomov, Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14, 573-584 (2017).

27. J. R. Marchesi et al., The gut microbiota and host health: a new clinical frontier. Gut 65, 330-339 (2016).

28. R. Pittayanon et al., Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review. Gastroenterology 158, 930-946 e931 (2020).

29. H. Sokol et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105, 16731-16736 (2008).

30. D. Parada Venegas et al., Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol 10, 277 (2019).

31. M. Lopez-Siles et al., Alterations in the Abundance and Co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the Colonic Mucosa of Inflammatory Bowel Disease Subjects. Front Cell Infect Microbiol 8, 281 (2018).

32. L. Wang et al., A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 69, 1988-1997 (2020).

33. C. V. Rao, H. L. Newmark, B. S. Reddy, Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19, 287-290 (1998).

34. E. R. Kim, D. K. Chang, Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J Gastroenterol 20, 9872-9881 (2014).

35. K. Bergstrom et al., Proximal colon-derived O-glycosylated mucus encapsulates and modulates the microbiota. Science 370, 467-472 (2020).

36. K. J. Gonzalez-Morelo, M. Vega-Sagardia, D. Garrido, Molecular Insights Into OLinked Glycan Utilization by Gut Microbes. Front Microbiol 11, 591568 (2020).

37. P. Paone, P. D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232-2243 (2020).

38. P. R. Taylor et al., Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8, 31-38 (2007).

39. S. LeibundGut-Landmann et al., Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8, 630-638 (2007).

40. A. Papi, C. Brightling, S. E. Pedersen, H. K. Reddel, Asthma. Lancet 391, 783-800 (2018).

41. S. Finotto, Resolution of allergic asthma. Semin Immunopathol 41, 665-674 (2019).

42. J. Deckers, F. Branco Madeira, H. Hammad, Innate immune cells in asthma. Trends Immunol 34, 540-547 (2013).

43. M. Ebbo, A. Crinier, F. Vely, E. Vivier, Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 17, 665-678 (2017).

44. P. Licona-Limon, L. K. Kim, N. W. Palm, R. A. Flavell, TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14, 536-542 (2013).

45. B. N. Lambrecht, H. Hammad, J. V. Fahy, The Cytokines of Asthma. Immunity 50, 975-991 (2019).

46. G. Brusselle, J. Kips, G. Joos, H. Bluethmann, R. Pauwels, Allergen-induced airway inflammation and bronchial responsiveness in wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 12, 254-259 (1995).

47. G. Grunig et al., Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261-2263 (1998).

48. S. P. Hogan, A. Koskinen, P. S. Foster, Interleukin-5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice. Immunol Cell Biol 75, 284-288 (1997).

49. S. Hadebe, F. Brombacher, G. D. Brown, C-Type Lectin Receptors in Asthma. Front Immunol 9, 733 (2018).

50. D. L. Clarke et al., Dectin-2 sensing of house dust mite is critical for the initiation of airway inflammation. Mucosal Immunol 7, 558-567 (2014).

51. T. Ito et al., Dectin-1 Plays an Important Role in House Dust Mite-Induced Allergic Airway Inflammation through the Activation of CD11b+ Dendritic Cells. J Immunol 198, 61-70 (2017).

52. M. J. Robinson et al., Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206, 2037-2051 (2009).

53. W. K. Sun et al., Dectin-1 is inducible and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial epithelial cells. Eur J Clin Microbiol Infect Dis 31, 2755-2764 (2012).

54. S. Nakae et al., Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375-387 (2002).

55. A. J. van Oosterhout, N. Bloksma, Regulatory T-lymphocytes in asthma. Eur Respir J 26, 918-932 (2005).

56. D. S. Robinson, Regulatory T cells and asthma. Clin Exp Allergy 39, 1314-1323 (2009).

57. H. Pang et al., Frequency of regulatory T-cells in the peripheral blood of patients with pulmonary tuberculosis from shanxi province, china. PLoS One 8, e65496 (2013).

58. K. Atarashi et al., Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337-341 (2011).

59. N. Arpaia et al., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451-455 (2013).

60. T. Ruohtula et al., Maturation of Gut Microbiota and Circulating Regulatory T Cells and Development of IgE Sensitization in Early Life. Front Immunol 10, 2494 (2019).

61. R. Zhai et al., Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Front Cell Infect Microbiol 9, 239 (2019).

62. M. C. Arrieta et al., Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7, 307ra152 (2015).

63. K. E. Fujimura et al., Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22, 1187-1191 (2016).

64. W. V. Filley, K. E. Holley, G. M. Kephart, G. J. Gleich, Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet 2, 11-16 (1982).

65. K. Rajakulasingam et al., Increased expression of high affinity IgE (FcepsilonRI) receptor-alpha chain mRNA and protein-bearing eosinophils in human allergeninduced atopic asthma. Am J Respir Crit Care Med 158, 233-240 (1998).

66. I. den Otter et al., High-affinity immunoglobulin E receptor expression is increased in large and small airways in fatal asthma. Clin Exp Allergy 40, 1473-1481 (2010).

67. J. L. Aron, O. Akbari, Regulatory T cells and type 2 innate lymphoid cell-dependent asthma. Allergy 72, 1148-1155 (2017).

68. W. Barcik, R. C. T. Boutin, M. Sokolowska, B. B. Finlay, The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 52, 241-255 (2020).

69. M. Noval Rivas, T. A. Chatila, Regulatory T cells in allergic diseases. J Allergy Clin Immunol 138, 639-652 (2016).

70. C. Roduit et al., High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74, 799-809 (2019).

71. A. M. Morton et al., Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A 111, 6696-6701 (2014).

72. Y. K. Lee, J. S. Menezes, Y. Umesaki, S. K. Mazmanian, Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108 Suppl 1, 4615-4622 (2011).

73. A. Trompette et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20, 159-166 (2014).

74. A. Cait et al., Microbiome-driven allergic lung inflammation is ameliorated by shortchain fatty acids. Mucosal Immunol 11, 785-795 (2018).

75. T. He et al., Lactobacillus johnsonii L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Salmonella enterica Infantis. Vet Microbiol 230, 187-194 (2019).

76. P. Naaber et al., Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J Med Microbiol 53, 551-554 (2004).

77. K. Saito et al., Differential regulatory function of resting and preactivated allergenspecific CD4+ CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol 181, 6889-6897 (2008).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る