リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system

Hu, Naonori Tanaka, Hiroki Kakino, Ryo Yoshikawa, Syuushi Miyao, Mamoru Akita, Kazuhiko Isohashi, Kayako Aihara, Teruhito Nihei, Keiji Ono, Koji 京都大学 DOI:10.1186/s13014-021-01968-2

2021

概要

Boron neutron capture therapy (BNCT) for the treatment of unresectable, locally advanced, and recurrent carcinoma of the head and neck cancer has been approved by the Japanese government for reimbursement under the national health insurance as of June 2020. A new treatment planning system for clinical BNCT has been developed by Sumitomo Heavy Industries, Ltd. (Sumitomo), NeuCure® Dose Engine. To safely implement this system for clinical use, the simulated neutron flux and gamma ray dose rate inside a water phantom was compared against experimental measurements. Furthermore, to validate and verify the new planning system, the dose distribution inside an anthropomorphic head phantom was compared against a BNCT treatment planning system SERA and an in-house developed Monte Carlo dose calculation program. The simulated results closely matched the experimental results, within 5% for the thermal neutron flux and 10% for the gamma ray dose rate. The dose distribution inside the head phantom closely matched with SERA and the in-house developed dose calculation program, within 3% for the tumour and a difference of 0.3 Gyw for the brain.

この論文で使われている画像

参考文献

1. Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Kashino G, et al.

Characteristics comparison between a cyclotron-based neutron

source and KUR-HWNIF for boron neutron capture therapy. Nucl

23. Instruments Methods Phys Res Sect B Beam Interact Mater Atoms.

2009;267(11):1970–7. https://​doi.​org/​10.​1016/j.​nimb.​2009.​03.​095.

Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Mitsumoto T, Fujita K,

et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Appl Radiat Isot.

2011;69(12):1642–5. https://​doi.​org/​10.​1016/j.​aprad​iso.​2011.​03.​020.

Miyatake SI, Wanibuchi M, Hu N, Ono K. Boron neutron capture therapy

for malignant brain tumors. J Neurooncol. 2020;149(1):1–11. https://​

doi.​org/​10.​1007/​s11060-​020-​03586-6.

Kumada H, Takada K. Treatment planning system and patient

positioning for boron neutron capture therapy. Ther Radiol Oncol.

2018;2:50–50.

Nigg DW, Wheeler FJ, Wessol DE, Capala J, Chadha M. Computational

dosimetry and treatment planning for boron neutron capture therapy. J

Neurooncol. 1997;33(1–2):93–104.

Zamenhof RG, Redmond E, Solares G, Katz D, Riley K, Kiger S, et al. Monte

Carlo-based treatment planning for boron neutron capture therapy using

custom designed models automatically generated from CT data. Int J

Radiat Oncol Biol Phys. 1996;35(2):383–97.

Wojnecki C, Green S. A preliminary comparative study of two treatment

planning systems developed for boron neutron capture therapy: MacNCTPlan and SERA. Med Phys. 2002;29(8):1710–5.

Goorley JT, Kiger WS, Zamenhof RG. Reference dosimetry calculations

for Neutron Capture Therapy with comparison of analytical and voxel

models. Med Phys. 2002;29(2):145–56.

Sato T, Iwamoto Y, Hashimoto S, Ogawa T, Furuta T, Abe S, et al. Features

of particle and heavy ion transport code system (PHITS) version 3.02. J

Nucl Sci Technol. 2018;55(6):684–90. https://​doi.​org/​10.​1080/​00223​131.​

2017.​14198​90.

Kato I, Fujita Y, Maruhashi A, Kumada H, Ohmae M, Kirihata M, et al. Effectiveness of boron neutron capture therapy for recurrent head and neck

malignancies. Appl Radiat Isot. 2009;67(7–8):S37-42.

Miyatake SI, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y,

et al. Survival benefit of Boron neutron capture therapy for recurrent

malignant gliomas. J Neurooncol. 2009;91(2):199–206.

Suzuki M, Sakurai Y, Hagiwara S, Masunaga S, Kinashi Y, Nagata K, et al.

First attempt of boron neutron capture therapy (BNCT) for hepatocellular

carcinoma. Jpn J Clin Oncol. 2007;37(5):376–81.

Suzuki M, Endo K, Satoh H, Sakurai Y, Kumada H, Kimura H, et al. A novel

concept of treatment of diffuse or multiple pleural tumors by boron

neutron capture therapy (BNCT). Radiother Oncol. 2008;88(2):192–5.

Kawabata S, Suzuki M, Hirose K, Tanaka H, Kato T, Goto H, et al. Accelerator-based BNCT for patients with recurrent glioblastoma: a multicenter

phase II study. Neuro-Oncol Adv. 2021;3(1):1–9.

Sakamoto Y, Iwai S, Sato O, Tanaka S, Tsuda S, Yamaguchi Y, et al. Dose

conversion coefficients for high-energy photons, electrons, neutrons and

protons. JAERI-1345. 2003;

Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S,

et al. JENDL-4.0: a new library for nuclear science and engineering. J Nucl

Sci Technol. 2011;48(1):1–30.

Nigg D, Wemple C, Wessol D, Wheeler F, Albright C, Cohen M, et al.

SERA—an advanced treatment planning system for neutron therapy and

BNCT. Trans Am Nucl Soc. 1999;80:223–32.

Wheeler F, Wessol D, Wemple C, Albright C, Cohen M, Frandsen M, et al.

SERA—an advanced treatment planning system for neutron therapy.

Ineel/Con-99. 1999;00523.

Blue TE, Gupta N, Woollard JE. A calculation of the energy dependence of

the RBE of neutrons. Phys Med Biol. 1993;38(12):1693–712.

Yanch JC, Zhou XL, Brownell GL. A Monte Carlo investigation of the dosimetric properties of monoenergetic neutron beams for neutron capture

therapy. Radiat Res. 1991;126(1):1–20.

International Atomic Energy Agency. Current Status of Neutron Capture

Therapy. Vienna: IAEA-TECDOC-1223; 2001. (TECDOC Series).

Sakurai Y, Kobayashi T. Characteristics of the KUR heavy water neutron

irradiation facility as a neutron irradiation field with variable energy spectra. Nucl Instruments Methods Phys Res Sect A Accel Spectrom Detect

Assoc Equip. 2000;453(3):569–96.

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol

S, et al. 3D Slicer as an image computing platform for the Quantitative

Imaging Network. Magn Reson Imaging. 2012;30(9):1323–41.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Hu et al. Radiation Oncology

(2021) 16:243

Page 13 of 13

24. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative

evaluation of dose distributions. Med Phys. 1998;25(5):656–61. https://​

doi.​org/​10.​1118/1.​598248.

25. Alexander K, Jechel C, Pinter C, Salomons G, Lasso A, Fichtinger G, et al.

SU-E-T-231: cross-validation of 3D gamma comparison tools. Med Phys.

2015;42(6Part15):3385–3385. https://​doi.​org/​10.​1118/1.​49245​92.

26. International Atomic Energy Agency. Commissioning and Quality

Assurance of Computerized Planning Systems for Radiation Treatment

of Cancer. Vienna: International Atomic Energy Agency; 2004. (Technical

Reports Series).

27. Daquino GG, Voorbraak WP. A review of the recommendations for the

physical dosimetry of boron neutron capture therapy (BNCT). Daquino

GG, Voorbraak WP, editors. Luxembourg: EUR; 2008.

28. Kumada H, Takada K, Aihara T, Matsumura A, Sakurai H, Sakae T.

Verification for dose estimation performance of a Monte-Carlo based

treatment planning system in University of Tsukuba. Appl Radiat Isot.

2019;2020(166):109222. https://​doi.​org/​10.​1016/j.​aprad​iso.​2020.​109222.

29. Pu N, Nishitani T, Isobe M, Ogawa K, Kawase H, Tanaka T, et al. In situ

calibration of neutron activation system on the large helical device. Rev

Sci Instrum. 2017;88(11):113302. https://​doi.​org/​10.​1063/1.​50094​75.

30. Kobayashi M, Nishitani T, Kato A, Saze T, Tanaka T, Yoshihashi S, et al. Evaluation of imaging plate measurement for activated indium as fast-neutron

detector in large radiation field. Prog Nucl Sci Technol. 2019;6:58–62.

31. Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys.

2018;45(4):e53-83.

32. Nigg DW. Computational dosimetry and treatment planning considerations for neutron capture therapy. 2003;75–86.

33. Stern RL, Heaton R, Fraser MW, Murty Goddu S, Kirby TH, Lam KL, et al.

Verification of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM Task Group 114. Med Phys. 2011;38(1):504–30.

34. Coderre JA, Makar MS, Micca PL, Nawrocky MM, Liu HB, Joel DD, et al.

Derivations of relative biological effectiveness for the high-let radiations

produced during boron neutron capture irradiations of the 9l rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol Biol Phys. 1993;27(5):1121–9.

35. Coderre JA, Chanana AD, Joel DD, Elowitz EH, Micca PL, Nawrocky MM,

et al. Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity.

Radiat Res. 1998;149(2):163–70.

36. Fukuda H, Hiratsuka J, Kobayashi T, Sakurai Y, Yoshino K, Karashima H,

et al. Boron neutron capture therapy (BNCT) for malignant melanoma

with special reference to absorbed doses to the normal skin and tumor.

Australas Phys Eng Sci Med. 2003;26(3):97–103.

37. Coderre JA, Morris GM, Micca PL, Fisher CD, Ross GA. Comparative assessment of single-dose and fractionated boron neutron capture therapy.

Radiat Res. 1995;144(3):310–7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research ? Choose BMC and benefit from:

• fast, convenient online submission

• thorough peer review by experienced researchers in your field

• rapid publication on acceptance

• support for research data, including large and complex data types

• gold Open Access which fosters wider collaboration and increased citations

• maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る