リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Associations between Left Ventricular Cavity Size and Cardiac Function and Overload Determined by Natriuretic Peptide Levels and a Covariance Structure Analysis.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Associations between Left Ventricular Cavity Size and Cardiac Function and Overload Determined by Natriuretic Peptide Levels and a Covariance Structure Analysis.

吉田, 純 東京慈恵会医科大学 DOI:info:doi/10.1038/s41598-017-02247-5

2020.06.26

概要

The effects of left ventricular (LV) cavity size on cardiac function and overload have not yet been fully elucidated. We performed a covariance structure analysis and drew theoretical path models to clarify the effects of hemodynamic parameters on the stroke volume index (SVI) as a marker of cardiac function and on the plasma B-type natriuretic peptide (BNP) level as a marker of cardiac overload. We simultaneously measured various hemodynamic parameters and the BNP levels during cardiac catheterization in 1,715 inpatients of our institution. The current path models tested the validity of the Frank-Starling law in patients with heart failure using the SVI, the LV end-systolic volume index (LVESVI) and the LV end-diastolic volume index (LVEDVI). Using the BNP levels, the path models clearly demonstrated that LVESVI substantially augmented cardiac overload, whereas LVEDVI palliated this parameter. These volume indices exerted opposite effects on cardiac function and overload. These results advance the understanding of the relationships between LV cavity size and both cardiac function and overload and indicate the increasing importance of LV diastolic volume in heart failure and the utility of LVESVI as an important marker of cardiac remodeling for further relevant studies.

参考文献

1. Katz, A. M. Ernest Henry Starling, his predecessors, and the “Law of the Heart”. Circulation. 106, 2986–2992, doi:10.1161/01. CIR.0000040594.96123.55 (2002).

2. Yancey, D. M. et al. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physio. 308, H651–663, doi:10.1152/ajpheart.00638.2014 (2015).

3. Pironti, G. et al. Circulating Exosomes Induced by Cardiac Pressure Overload Contain Functional Angiotensin II Type 1 Receptors. Circulation. 131, 2120–2130, doi:10.1161/CIRCULATIONAHA.115.015687 (2015).

4. Wei, C. C. et al. Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One. 7, e40110, doi:10.1371/journal.pone.0040110 (2012).

5. Westman, P. C. et al. Inflammation as a Driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 67, 2050–2060, doi:10.1016/j.jacc.2016.01.073 (2016).

6. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: The fibroblast awakens. Circ Res. 118, 1021–1040, doi:10.1161/CIRCRESAHA.115.306565 (2016).

7. Cikes, M. & Solomon, S. D. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J. 37, 1642–1650, doi:10.1093/eurheartj/ehv510 (2016).

8. Sudoh, T., Kangawa, K., Minamino, N. & Matsuo, H. A new natriuretic peptide in porcine brain. Nature. 332, 78–81, doi:10.1038/332078a0 (1988).

9. Mukoyama, M. et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 87, 1402–1412, doi:10.1172/JCI115146 (1991).

10. Yasue, H. et al. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 90, 195–203, doi:10.1161/01.CIR.90.1.195 (1994).

11. Nakagawa, O. et al. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest. 96, 1280–1287, doi:10.1172/JCI118162 (1995).

12. Harada, E. et al. Effect of interleukin-1 beta on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture. J Mol Cell Cardiol. 31, 1997–2006, doi:10.1006/jmcc.1999.1030 (1999).

13. Tokola, H. et al. Bone morphogenetic protein-2–a potential autocrine/paracrine factor in mediating the stretch activated B-type and atrial natriuretic peptide expression in cardiac myocytes. Mol Cell Endocrinol. 399, 9–21, doi:10.1016/j.mce.2014.09.003 (2015).

14. Suzuki, S. et al. Plasma level of B-type natriuretic peptide as a prognostic marker after acute myocardial infarction: a long-term follow-up analysis. Circulation. 110, 1387–1391, doi:10.1161/01.CIR.0000141295.60857.30 (2004).

15. Daniels, L. B., Clopton, P., Jiang, K., Greenberg, B. & Maisel, A. S. Prognosis of stage A or B heart failure patients with elevated B-type natriuretic peptide levels. J Card Fail. 16, 93–98, doi:10.1016/j.cardfail.2009.10.020 (2010).

16. Nakane, T. et al. Contribution of extracardiac factors to the inconsistency between plasma B-type natriuretic peptide levels and the severity of pulmonary congestion on chest X-rays in the diagnosis of heart failure. Intern Med. 51, 239–248, doi:10.2169/ internalmedicine.51.6206 (2012).

17. Kawai, M. et al. Determination of the B-type natriuretic peptide level as a criterion for abnormalities in Japanese individuals in routine clinical practice: the J-ABS Multi-Center Study (Japan Abnormal BNP Standard). Intern Med. 52, 171–177, doi:10.2169/ internalmedicine.52.8704 (2013).

18. van Veldhuisen, D. J. et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol. 61, 1498–1506, doi:10.1016/j.jacc.2012.12.044 (2013).

19. Kinoshita, K. et al. Potent influence of obesity on suppression of plasma B-type natriuretic peptide levels in patients with acute heart failure: An approach using covariance structure analysis. Int J Cardiol. 215, 283–290, doi:10.1016/j.ijcard.2016.04.111 (2016).

20. Gomes, W. J., Saavedra, R. E., Garanhao, D. M., Carvalho, A. R. & Alves, F. A. The renewed concept of the Batista operation for ischemic cardiomyopathy: maximum ventricular reduction. Rev Bras Cir Cardiovasc. 26, 544–551, doi:10.5935/1678-9741.20110043 (2011).

21. Kawaguchi, A. T. et al. Does repair of mitral regurgitation eliminate the need for left ventricular volume reduction? J Card Surg. 18 (Suppl 2), S95–S100, doi:10.1046/j.1540-8191.18.s2.4.x (2003).

22. Komukai, K. et al. Decreased renal function as an independent predictor of re-hospitalization for congestive heart failure. Circ J. 72, 1152–1157, doi:10.1253/circj.72.1152 (2008).

23. Morita, E. et al. Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation. 88, 82–91, doi:10.1161/01.CIR.88.1.82 (1993).

参考文献をもっと見る