リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of a Visualization Deep Learning Model for Classifying Origins of Ventricular Arrhythmias」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of a Visualization Deep Learning Model for Classifying Origins of Ventricular Arrhythmias

Nakasone, Kazutaka Nishimori, Makoto Kiuchi, Kunihiko Shinohara, Masakazu Fukuzawa, Koji Takami, Mitsuru El Hamriti, Mustapha Sommer, Philipp Sakai, Jun Nakamura, Toshihiro Yatomi, Atsusuke Sonoda, Yusuke Takahara, Hiroyuki Yamamoto, Kyoko Suzuki, Yuya Tani, Kenichi Iwai, Hidehiro Nakanishi, Yusuke Hirata, Ken-ichi 神戸大学

2022.07.25

概要

Background: Several algorithms have been proposed for differentiating the right and left outflow tracts (RVOT/LVOT) arrhythmia origins from 12-lead electrocardiograms (ECGs); however, the procedure is complicated. A deep learning (DL) model, a form of artificial intelligence, can directly use ECGs and depict the importance of the leads and waveforms. This study aimed to create a visualized DL model that could classify arrhythmia origins more accurately.

Methods and Results: This study enrolled 80 patients who underwent catheter ablation. A convolutional neural network-based model that could classify arrhythmia origins with 12-lead ECGs and visualize the leads that contributed to the diagnosis using a gradient-weighted class activation mapping method was developed. The average prediction results of the origins by the DL model were 89.4% (88.2–90.6) for accuracy and 95.2% (94.3–96.2) for recall, which were significantly better than when a conventional algorithm is used. The ratio of the contribution to the prediction differed between RVOT and LVOT origins. Although leads V1 to V3 and the limb leads had a focused balance in the LVOT group, the contribution ratio of leads aVR, aVL, and aVF was higher in the RVOT group.

Conclusions: This study diagnosed the arrhythmia origins more accurately than the conventional algorithm, and clarified which part of the 12-lead waveforms contributed to the diagnosis. The visualized DL model was convincing and may play a role in understanding the pathogenesis of arrhythmias.

参考文献

1. Callans DJ, Volker M, Schwartzman D, Gottlieb CD, Marchlinski FE. Repetitive monomorphic tachycardia from the left ventricular outflow tract: Electrocardiographic patterns consistent with a left ventricular site of origin. J Am Coll Cardiol 1997; 29: 1023 – 1027.

2. Lerman BB, Stein KM, Markowitz SM. Idiopathic right ven- tricular outflow tract tachycardia: A clinical approach. Pacing and Clin Electrophysiol 1996; 19: 2120 – 2137.

3. Calkins H, Kalbfleisch SJ, El-Atassi R, Langberg JJ, Morady F. Relation between efficacy of radiofrequency catheter ablation and site of origin of idiopathic ventricular tachycardia. Am J Cardiol 1993; 71: 827 – 833.

4. Coggins DL, Lee RJ, Sweeney J, Chein WW, Van Hare G, Epstein L, et al. Radiofrequency catheter ablation as a cure for idiopathic tachycardia of both left and eight ventricular origin. J Am Coll Cardiol 1994; 23: 1333 – 1341.

5. Morady F, Kadish AH, DiCarlo L, Kou WH, Winston S, Debuitlier M, et al. Long-term results of catheter ablation of idio- pathic right ventricular tachycardia. Circulation 1990; 82: 2093 –2099.

6. Karlheinz S, Schumacher B, Hauer B, Jung W, Drogemuller A, Senges J, et al. Radiofrequency catheter ablation of frequent monomorphic ventricular ectopic activity. J Cardiovasc Electro- physiol 1999; 10: 924 – 934.

7. Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, et al. 2019 HRS/EHRA/APHRS/LAHRS Expert consensus statement on catheter ablation of ventricular arrhythmias. Euro- pace 2019; 21: 1143 – 1144.

8. Kamakura S, Shimizu W, Matsuo K, Taguchi A, Suyama K, Kurita T, et al. Localization of optimal ablation site of idiopathic ventricular tachycardia from right and left ventricular outflow tract by body surface ECG. Circulation 1998; 98: 1525 – 1533.

9. Ouyang F, Fotuhi P, Ho SY, Hebe Joachim, Volkmer M, Goya M, et al. Repetitive monomorphic ventricular tachycardia origi- nating from the Aortic Sinus Cusp: Electrocardiographic char- acterization for guiding catheter ablation. J Am Coll Cardiol 2002; 39: 500 – 508.

10. Ito S, Tada H, Naito S, Kurosaki K, Ueda M, Hoshizaki H, et al. Development and validation of an ECG algorithm for identi- fying the optimal ablation site for idiopathic ventricular outflow tract tachycardia. J Cardiovasc Electrophysiol 2003; 14: 1280 –1286.

11. Yang Y, Saenz LC, Varosy PD, Badhwar N, Tan JH, Kilicaslan F, et al. Using the initial vector from surface electrocardiogram to distinguish the site of outflow tract tachycardia. Pacing Clin Electrophysiol 2007; 30: 891 – 898.

12. Zhang F, Chen M, Yang B, Ju W, Chen H, Yu J, et al. Electro- cardiographic algorithm to identify the optimal target ablation site for idiopathic right ventricular outflow tract ventricular pre- mature contraction. Europace 2009; 11: 1214 – 1220.

13. Betensky BP, Park RE, Marchlinski FE, Hutchinson MD, Garcia FC, Dixit S, et al. The V2 transition ratio: A new electrocardio- graphic criterion for distinguishing left from right ventricular outflow tract tachycardia origin. J Am Coll Cardiol 2011; 57: 2255 – 2262.

14. Yoshida N, Inden Y, Uchikawa T, Kamiya H, Kitamura K, Shimano M, et al. Novel transitional zone index allows more accurate differentiation between idiopathic right ventricular out- flow tract and aortic sinus cusp ventricular arrhythmias. Heart Rhythm 2011; 8: 349 – 356.

15. Cheng Z, Deng H, Chen T, Gao P, Zhu K, Fang Q. The R-wave deflection interval in lead V3 combining with R-wave amplitude index in lead V1: A new surface ECG algorithm for distinguish- ing left from right ventricular outflow tract tachycardia origin in patients with transitional lead at V3. Int J Cardiol 2013; 168: 1342 – 1348.

16. Yoshida N, Yamada T, McElderry HT, Inden Y, Shimano M, Murohara T, et al. A novel electrocardiographic criterion for differentiating a left from right ventricular outflow tract tachy- cardia origin: The V2s/V3r Index. J Cardiovasc Electrophysiol 2014; 25: 747 – 753.

17. He Z, Liu M, Yu M, Lu N, Li J, Xu T, et al. An electrocardio- graphic diagnostic model for differentiating left from right ventricu- lar outflow tract tachycardia origin. J Cardiovasc Electrophysiol 2018; 29: 908 – 915.

18. Kaypakli O, Koca H, Sahin DY, Karataş F, Ozbicer S, Koç M. S–R difference in V1–V2 is a novel criterion for differentiating the left from right ventricular outflow tract arrhythmias. Ann Noninvasive Electrocardiol 2018; 23: e12516.

19. Xie S, Kubala M, Liang JJ, Hayashi T, Park J, Padros IL, et al. Lead I R–wave amplitude to differentiate idiopathic ventricular arrhythmias with left bundle branch block right inferior axis originating from the left versus right ventricular outflow tract. J Cardiovasc Electrophysiol 2018; 29: 1515 – 1522.

20. Di C, Wan Z, Tse G, Letsas KP, Liu T, Efremidis M, et al. The V 1–V 3 transition index as a novel electrocardiographic criterion for differentiating left from right ventricular outflow tract ventricular arrhythmias. J Interv Card Electrophysiol 2019; 56: 37 – 43.

21. Zheng J, Fu G, Abudayyeh I, Yacoub M, Chang A, Feaster WW, et al. A high-precision machine learning algorithm to classify left and right outflow tract ventricular tachycardia. Front Physiol 2021; 12: 641066.

22. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat Med 2019; 25: 70 – 74.

23. Attia ZI, Harmon DM, Behr ER, Friedman PA. Application of artificial intelligence to the electrocardiogram. Eur Heart J 2021;42: 4717 – 4730.

24. Somani S, Russak AJ, Richter F, Zhao S, Vaid A, Chaudhry F, et al. Deep learning and the electrocardiogram: Review of the current state-of-the-art. Europace 2021; 23: 1179 – 1191.

25. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proc IEEE int Conf Comput Vis 2017; 2017: 618 – 626.

26. Shoei K, Huang S, Miller JM. Catheter ablation of cardiac arrhythmias, 3rd edn, Philadelphia: Elsevier; 2014. pp. 523 – 534.

27. Sekiguchi Y, Aonuma K, Takahashi A, Yamauchi Y, Hachiya H, Yokoyama Y, et al. Electrocardiographic and electrophysio- logic characteristics of ventricular tachycardia originating within the pulmonary artery. J Am Coll Cardiol 2005; 45: 887 – 895.

28. Nishimori M, Kiuchi K, Nishimura K, Kusano K, Yoshida A, Adachi K, et al. Accessory pathway analysis using a multimodal deep learning model. Sci Rep 2021; 11: 8045.

29. Goldberger E. The aVL, aVR, and aVF leads: A simplification of standard lead electrocardiography. Am Heart J 1942; 24: 378 – 396.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る