リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bile Duct Regeneration with an Artificial Bile Duct Made of Gelatin Hydrogel Nonwoven Fabrics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bile Duct Regeneration with an Artificial Bile Duct Made of Gelatin Hydrogel Nonwoven Fabrics

Uemoto, Yusuke Taura, Kojiro Nakamura, Daichi Xuefeng, Li Nam, Nguyen Hai Kimura, Yusuke Yoshino, Kenji Fuji, Hiroaki Yoh, Tomoaki Nishio, Takahiro Yamamoto, Gen Koyama, Yukinori Seo, Satoru Tsuruyama, Tatsuaki Iwaisako, Keiko Uemoto, Shinji Tabata, Yasuhiko Hatano, Etsuro 京都大学 DOI:10.1089/ten.TEA.2021.0209

2022.09

概要

Although choledochojejunostomy is the standard technique for biliary reconstruction, there are various associated problems that need to be solved such as reflux cholangitis. Interposition with an artificial bile duct (ABD) to replace the resected bile duct maintains a physiological conduit for bile and may solve this problem. This study investigated the usefulness of an ABD made of gelatin hydrogel nonwoven fabric (GHNF). GHNF was prepared by the solution blow spinning method. The migration and activity of murine fibroblast L929 cells were examined in GHNF sheets. L929 cells migrated into GHNF sheets, where they proliferated and synthesized collagen, suggesting GHNF is a promising scaffold for bile duct regeneration. ABDs made of GHNF were implanted in place of resected bile duct segments in rats. The rats were killed at 2, 6, and 12 weeks postimplantation. The implantation site was histologically evaluated for bile duct regeneration. At postoperative 2 weeks, migrating cells were observed in the ABD pores. The implanted ABD was mostly degraded and replaced by collagen fibers at 6 weeks. Ki67-positive bile duct epithelial cells appeared within the implanted ABD. These were most abundant within the central part of the ABD after 6 weeks. The percentages of Ki67-positive cells were 31.7 ± 9.1% in the experimental group and 0.8 ± 0.6% in the sham operation group at 6 weeks (p < 0.05), indicating that mature biliary epithelial cells at the stump proliferated to regenerate the biliary epithelium. Biliary epithelial cells had almost completely covered the bile duct lumen at 12 weeks (epithelialization ratios: 10.4 ± 6.9% at 2 weeks, 93.1 ± 5.1% at 6 weeks, 99.2 ± 1.6% at 12 weeks). The regenerated epithelium was positive for the bile duct epithelium marker cytokeratin 19. Bile duct regeneration was accompanied by angiogenesis, as evidenced by the appearance of CD31-positive vascular structures. Capillaries were induced 2 weeks after implantation. The number of capillaries reached a maximum at 6 weeks and decreased to the same level as that of normal bile ducts at 12 weeks. These results showed that an ABD of GHNF contributed to successful bile duct regeneration in rats by facilitating the cell migration required for extracellular matrix synthesis, angiogenesis, and epithelialization. Impact Statement Development of an artificial bile duct (ABD) enables physiological biliary reconstruction and may solve clinical problems associated with choledochojejunostomy. In this study, we created ABDs with gelatin hydrogel nonwoven fabric and implanted them in place of resected bile duct in rats. We evaluated the process of bile duct regeneration as well as decomposition of the ABD and demonstrated successful regeneration of resected bile duct, highlighting the possibility of this novel biliary reconstruction method to replace choledochojejunostomy.

この論文で使われている画像

参考文献

1. Panis Y, Fagniez PL, Brisset D, Lacaine F, Levard H, Hay JM. Long term results of choledochoduodenostomy versus choledochojejunostomy for choledocholithiasis. The French Association for Surgical Research. Surgery, gynecology & obstetrics. 1993;177(1):33-7.

2. Tocchi A, Mazzoni G, Liotta G, Lepre L, Cassini D, Miccini M. Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: a follow-up study of more than 1,000 patients. Annals of surgery. 2001;234(2):210-4. doi:10.1097/00000658-200108000-00011.

3. Ginsburg N, Speese J. Autogenous fascial reconstruction of the bile duct. Annals of surgery. 1917;65(1):79-88. doi:10.1097/00000658-191701000-00007.

4. Capitanich P, Herrera J, Iovaldi ML et al. Bile duct replacement using an autologous femoral vein graft: an experimental study. Preliminary results. J Gastrointest Surg. 2005;9(3):369-73. doi:10.1016/j.gassur.2004.09.024.

5. Cheng Y, Xiong XZ, Zhou RX et al. Repair of a common bile duct defect with a decellularized ureteral graft. World J Gastroenterol. 2016;22(48):10575-83. doi:10.3748/wjg.v22.i48.10575.

6. Miyazawa M, Torii T, Toshimitsu Y, Okada K, Koyama I, Ikada Y. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant. 2005;5(6):1541-7. doi:10.1111/j.1600-6143.2005.00845.x.

7. Nakashima S, Nakamura T, Han L-H et al. Experimental Biliary Reconstruction with an Artificial Bile Duct Using in situ Tissue Engineering Technique. Inflammation and Regeneration. 2007;27(6):579-85.

8. Gómez NA, Alvarez LR, Mite A et al. Repair of bile duct injuries with Gore-Tex vascular grafts: experimental study in dogs. J Gastrointest Surg. 2002;6(1):116-20. doi:10.1016/s1091-255x(01)00038-5.

9. Nakamura K, Saotome T, Shimada N, Matsuno K, Tabata Y. A Gelatin Hydrogel Nonwoven Fabric Facilitates Metabolic Activity of Multilayered Cell Sheets. Tissue Eng Part C Methods. 2019;25(6):344-52. doi:10.1089/ten.TEC.2019.0061.

10. Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng. 2019;128(5):606-12. doi:10.1016/j.jbiosc.2019.04.013.

11. Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. Wiley interdisciplinary reviews Developmental biology. 2012;1(5):643-55. doi:10.1002/wdev.47.

12. Muller WA, Ratti CM, McDonnell SL, Cohn ZA. A human endothelial cell-restricted, externally disposed plasmalemmal protein enriched in intercellular junctions. The Journal of experimental medicine. 1989;170(2):399-414. doi:10.1084/jem.170.2.399.

13. Zong C, Wang M, Yang F et al. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs. Journal of tissue engineering and regenerative medicine. 2017;11(4):966-76. doi:10.1002/term.1996.

14. Matsui M, Tabata Y. Enhanced angiogenesis by multiple release of platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogels. Acta Biomater. 2012;8(5):1792-801. doi:10.1016/j.actbio.2012.01.016.

15. Nau P, Liu J, Ellison EC, Hazey JW et al. Novel reconstruction of the extrahepatic biliary tree with a biosynthetic absorbable graft. HPB (Oxford). 2011;13(8):573-8. doi:10.1111/j.1477-2574.2011.00337.x.

16. Li H, Chang J. Preparation and characterization of bioactive and biodegradable wollastonite/poly(D,L-lactic acid) composite scaffolds. Journal of materials science Materials in medicine. 2004;15(10):1089-95. doi:10.1023/B:JMSM.0000046390.09540.c2.

17. Taylor M, S.Daniels AU, Andriano KP, Heller J. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. Journal of applied biomaterials : an official journal of the Society for Biomaterials. 1994;5(2):151-7. doi:10.1002/jab.770050208.

18. Suganuma J, Alexander H. Biological response of intramedullary bone to poly-L- lactic acid. Journal of Applied Biomaterials. 1993;4(1):13-27. doi:https://doi.org/10.1002/jab.770040103.

19. desJardins-Park HE, Foster DS, Longaker MT. Fibroblasts and wound healing: an update. Regenerative medicine. 2018;13(5):491-5. doi:10.2217/rme-2018-0073.

20. Saotome T, Shimada N, Matsuno K, Nakamura K, Tabata Y. Gelatin hydrogel nonwoven fabrics of a cell culture scaffold to formulate 3-dimensional cell constructs. Regen Ther. 2021;18:418-29. doi:10.1016/j.reth.2021.09.008.

21. Morell CM, Fabris L, Strazzabosco M. Vascular biology of the biliary epithelium. J Gastroenterol Hepatol. 2013;28 Suppl 1:26-32. doi:10.1111/jgh.12022.

22. Jinno C, Morimoto N, Ito R et al. A Comparison of Conventional Collagen Sponge and Collagen-Gelatin Sponge in Wound Healing. Biomed Res Int. 2016;2016:4567146. doi:10.1155/2016/4567146.

23. Chiu LL, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31(2):226-41. doi:10.1016/j.biomaterials.2009.09.039.

24. Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue engineering. 2006;12(7):1955-70. doi:10.1089/ten.2006.12.1955.

25. Xiao X, Wang W, Liu D et al. The promotion of angiogenesis induced by three- dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:9409. doi:10.1038/srep09409.

26. Nagaike R, Sawaguchi A, Kawano J, Aoyama F, Oinuma T, Suganuma T. Regeneration of gastric mucosa during ulcer healing follows pathways that correspond to the ontogenetic course of rat fundic glands. Virchows Arch. 2004;445(6):580-8. doi:10.1007/s00428-004-1134-x.

27. Carpino G, Nevi L, Overi D et al. Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology. 2020;71(3):972-89. doi:10.1002/hep.30871.

28. Sampaziotis F, Justin AW, Tysoe OC et al. Reconstruction of the mouse extrahepatic biliary tree using primary human extrahepatic cholangiocyte organoids. Nat Med. 2017;23(8):954-63. doi:10.1038/nm.4360.

29. Vashisht K, Nady SL, Engler RD et al. Extraparenchymal Bile/Pancreatic Ducts and Duodenal Papillae: Pathologic Evaluation in Nonclinical Species--A Brief Review. Toxicol Pathol. 2015;43(5):651-61. doi:10.1177/0192623314560612.

30. Yang J, Lu B. Establishment of a novel rat model of severe acute cholangitis. Iranian journal of basic medical sciences. 2015;18(11):1124-9.

31. Li WC, Zhang HM, Li J et al. Comparison of biomechanical properties of bile duct between pigs and humans for liver xenotransplant. Transplant Proc. 2013;45(2):741-7. doi:10.1016/j.transproceed.2012.11.006.

参考文献をもっと見る