リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation (本文)

石野, 響子 慶應義塾大学

2021.03.23

概要

In animal gonads, transposable elements are actively repressed to preserve genome integrity through the PIWI-interacting RNA (piRNA) pathway. In mice, piR- NAs are abundantly expressed in male germ cells, and form effector complexes with three distinct PI- WIs. The depletion of individual Piwi genes causes male-specific sterility with no discernible phenotype in female mice. Unlike mice, most other mammals have four PIWI genes, some of which are expressed in the ovary. Here, purification of PIWI complexes from oocytes of the golden hamster revealed that the size of the PIWIL1-associated piRNAs changed during oocyte maturation. In contrast, PIWIL3, an ovary-specific PIWI in most mammals, associates with short piRNAs only in metaphase II oocytes, which coincides with intense phosphorylation of the protein. An improved high-quality genome assembly and annotation revealed that PIWIL1- and PIWIL3- associated piRNAs appear to share the 5r-ends of common piRNA precursors and are mostly derived from unannotated sequences with a diminished con- tribution from TE-derived sequences, most of which correspond to endogenous retroviruses. Our find- ings show the complex and dynamic nature of bio- genesis of piRNAs in hamster oocytes, and together with the new genome sequence generated, serve as the foundation for developing useful models to study the piRNA pathway in mammalian oocytes.

この論文で使われている画像

参考文献

1. Chuong,E.B., Elde,N.C. and Feschotte,C. (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet., 18, 71–86.

2. Han,J.S. and Boeke,J.D. (2005) LINE-1 retrotransposons: modulators of quantity and quality of mammalian gene expression? Bioessays, 27, 775–784.

3. Hancks,D.C. and Kazazian,H.H. Jr (2016) Roles for retrotransposon insertions in human disease. Mob DNA, 7, 9.

4. Iwasaki,Y.W., Siomi,M.C. and Siomi,H. (2015) PIWI-interacting RNA: its biogenesis and functions. Annu. Rev. Biochem., 84, 405–433.

5. Ozata,D.M., Gainetdinov,I., Zoch,A., O’Carroll,D. and Zamore,P.D. (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet., 20, 89–108.

6. Brennecke,J., Aravin,A.A., Stark,A., Dus,M., Kellis,M., Sachidanandam,R. and Hannon,G.J. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 128, 1089–1103.

7. Gunawardane,L.S., Saito,K., Nishida,K.M., Miyoshi,K., Kawamura,Y., Nagami,T., Siomi,H. and Siomi,M.C. (2007) A slicer-mediated mechanism for repeat-associated siRNA 5r end formation in Drosophila. Science, 315, 1587–1590.

8. Han,B.W., Wang,W., Li,C., Weng,Z. and Zamore,P.D. (2015) Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science, 348, 817–821.

9. Mohn,F., Handler,D. and Brennecke,J. (2015) Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis. Science, 348, 812–817.

10. Aravin,A., Gaidatzis,D., Pfeffer,S., Lagos-Quintana,M., Landgraf,P., Iovino,N., Morris,P., Brownstein,M.J., Kuramochi-Miyagawa,S., Nakano,T. et al. (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 442, 203–207.

11. Girard,A., Sachidanandam,R., Hannon,G.J. and Carmell,M.A. (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 442, 199–202.

12. Lau,N.C., Seto,A.G., Kim,J., Kuramochi-Miyagawa,S., Nakano,T., Bartel,D.P. and Kingston,R.E. (2006) Characterization of the piRNA complex from rat testes. Science, 313, 363–367.

13. Vagin,V.V., Sigova,A., Li,C., Seitz,H., Gvozdev,V. and Zamore,P.D. (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science, 313, 320–324.

14. Khurana,J.S., Wang,J., Xu,J., Koppetsch,B.S., Thomson,T.C., Nowosielska,A., Li,C., Zamore,P.D., Weng,Z. and Theurkauf,W.E. (2011) Adaptation to P element transposon invasion in Drosophila melanogaster. Cell, 147, 1551–1563.

15. Saito,K., Inagaki,S., Mituyama,T., Kawamura,Y., Ono,Y., Sakota,E., Kotani,H., Asai,K., Siomi,H. and Siomi,M.C. (2009) A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature, 461, 1296–1299.

16. Robine,N., Lau,N.C., Balla,S., Jin,Z., Okamura,K., Kuramochi-Miyagawa,S., Blower,M.D. and Lai,E.C. (2009) A broadly conserved pathway generates 3 UTR-directed primary piRNAs. Curr. Biol., 19, 2066–2076.

17. Gonzalez,J., Qi,H., Liu,N. and Lin,H. (2015) Piwi is a key regulator of both somatic and germline stem cells in the drosophila testis. Cell Rep., 12, 150–161.

18. Gainetdinov,I., Colpan,C., Arif,A., Cecchini,K. and Zamore,P.D. (2018) A single mechanism of biogenesis, initiated and directed by PIWI proteins, explains piRNA production in most animals. Mol. Cell, 71, 775–790.

19. Ipsaro,J.J., Haase,A.D., Knott,S.R., Joshua-Tor,L. and Hannon,G.J. (2012) The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature, 491, 279–283.

20. Nishimasu,H., Ishizu,H., Saito,K., Fukuhara,S., Kamatani,M.K., Bonnefond,L., Matsumoto,N., Nishizawa,T., Nakanaga,K., Aoki,J. et al. (2012) Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature, 491, 284–287.

21. Hayashi,R., Schnabl,J., Handler,D., Mohn,F., Ameres,S.L. and Brennecke,J. (2016) Genetic and mechanistic diversity of piRNA 3r-end formation. Nature, 539, 588–592.

22. Izumi,N., Shoji,K., Sakaguchi,Y., Honda,S., Kirino,Y., Suzuki,T., Katsuma,S. and Tomari,Y. (2016) Identification and functional analysis of the pre-piRNA 3r trimmer in silkworms. Cell, 164, 962–973.

23. Nishida,K.M., Sakakibara,K., Iwasaki,Y.W., Yamada,H., Murakami,R., Murota,Y., Kawamura,T., Kodama,T., Siomi,H. and Siomi,M.C. (2018) Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis. Nature, 555, 260–264.

24. Horwich,M.D., Li,C., Matranga,C., Vagin,V., Farley,G., Wang,P. and Zamore,P.D. (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol., 17, 1265–1272.

25. Kirino,Y. and Mourelatos,Z. (2007) The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA, 13, 1397–1401.

26. Saito,K., Sakaguchi,Y., Suzuki,T., Suzuki,T., Siomi,H. and Siomi,M.C. (2007) Pimet, the Drosophila homolog of HEN1, mediates 2r-O-methylation of Piwi- interacting RNAs at their 3r ends. Genes Dev., 21, 1603–1608.

27. Matsumoto,N., Nishimasu,H., Sakakibara,K., Nishida,K.M., Hirano,T., Ishitani,R., Siomi,H., Siomi,M.C. and Nureki,O. (2016) Crystal structure of silkworm PIWI-Clade argonaute siwi bound to piRNA. Cell, 167, 484–497.

28. Wang,Y., Sheng,G., Juranek,S., Tuschl,T. and Patel,D.J. (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature, 456, 209–213.

29. Yamaguchi,S., Oe,A., Nishida,K.M., Yamashita,K., Kajiya,A., Hirano,S., Matsumoto,N., Dohmae,N., Ishitani,R., Saito,K. et al. (2020) Crystal structure of Drosophila Piwi. Nat. Commun., 11, 858.

30. Pillai,R.S. and Chuma,S. (2012) piRNAs and their involvement in male germline development in mice. Dev. Growth Differ., 54, 78–92.

31. Thomson,T. and Lin,H. (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu. Rev. Cell Dev. Biol., 25, 355–376.

32. Aravin,A.A., Sachidanandam,R., Bourc’his,D., Schaefer,C., Pezic,D., Toth,K.F., Bestor,T. and Hannon,G.J. (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell, 31, 785–799.

33. Reuter,M., Berninger,P., Chuma,S., Shah,H., Hosokawa,M., Funaya,C., Antony,C., Sachidanandam,R. and Pillai,R.S. (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature, 480, 264–267.

34. De Fazio,S., Bartonicek,N., Di Giacomo,M., Abreu-Goodger,C., Sankar,A., Funaya,C., Antony,C., Moreira,P.N., Enright,A.J. and O’Carroll,D. (2011) The endonuclease activity of MILI fuels piRNA amplification that silences LINE1 elements. Nature, 480, 259–263.

35. Li,X.Z., Roy,C.K., Dong,X., Bolcun-Filas,E., Wang,J., Han,B.W., Xu,J., Moore,M.J., Schimenti,J.C., Weng,Z. et al. (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell, 50, 67–81.

36. Sasaki,T., Shiohama,A., Minoshima,S. and Shimizu,N. (2003) Identification of eight members of the Argonaute family in the human genome. Genomics, 82, 323–330.

37. Hirano,T., Iwasaki,Y.W., Lin,Z.Y., Imamura,M., Seki,N.M., Sasaki,E., Saito,K., Okano,H., Siomi,M.C. and Siomi,H. (2014) Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate. RNA, 20, 1223–1237.

38. Roovers,E.F., Rosenkranz,D., Mahdipour,M., Han,C.T., He,N., Chuva de Sousa Lopes,S.M., van der Westerlaken,L.A., Zischler,H., Butter,F., Roelen,B.A. et al. (2015) Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep., 10, 2069–2082.

39. Williams,Z., Morozov,P., Mihailovic,A., Lin,C., Puvvula,P.K., Juranek,S., Rosenwaks,Z. and Tuschl,T. (2015) Discovery and characterization of piRNAs in the human fetal ovary. Cell Rep., 13, 854–863.

40. Yang,Q., Li,R., Lyu,Q., Hou,L., Liu,Z., Sun,Q., Liu,M., Shi,H., Xu,B., Yin,M. et al. (2019) Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun., 10, 3389.

41. Kabayama,Y., Toh,H., Katanaya,A., Sakurai,T., Chuma,S., Kuramochi-Miyagawa,S., Saga,Y., Nakano,T. and Sasaki,H. (2017) Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res., 45, 5387–5398.

42. Hirose,M. and Ogura,A. (2019) The golden (Syrian) hamster as a model for the study of reproductive biology: past, present, and future. Reprod Med Biol, 18, 34–39.

43. Sia,S.F., Yan,L.M., Chin,A.W.H., Fung,K., Choy,K.T., Wong,A.Y.L., Kaewpreedee,P., Perera,R., Poon,L.L.M., Nicholls,J.M. et al. (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature, 583, 834–838.

44. Fan,Z., Li,W., Lee,S.R., Meng,Q., Shi,B., Bunch,T.D., White,K.L., Kong,I.K. and Wang,Z. (2014) Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system. PLoS One, 9, e109755.

45. Hirose,M., Honda,A., Fulka,H., Tamura-Nakano,M., Matoba,S., Tomishima,T., Mochida,K., Hasegawa,A., Nagashima,K., Inoue,K. et al. (2020) Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proc. Natl. Acad. Sci. U.S.A., 117, 2513–2518.

46. Ishizuka,A., Siomi,M.C. and Siomi,H. (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev., 16, 2497–2508.

47. Nishida,K.M., Saito,K., Mori,T., Kawamura,Y., Nagami-Okada,T., Inagaki,S., Siomi,H. and Siomi,M.C. (2007) Gene silencing mechanisms mediated by Aubergine piRNA complexes in Drosophila male gonad. RNA, 13, 1911–1922.

48. Miyoshi,K., Miyoshi,T., Hartig,J.V., Siomi,H. and Siomi,M.C. (2010) Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA, 16, 506–515.

49. Ohara,T., Sakaguchi,Y., Suzuki,T., Ueda,H., Miyauchi,K. and Suzuki,T. (2007) The 3r termini of mouse Piwi-interacting RNAs are 2r-O-methylated. Nat. Struct. Mol. Biol., 14, 349–350.

50. Simon,B., Kirkpatrick,J.P., Eckhardt,S., Reuter,M., Rocha,E.A., Andrade-Navarro,M.A., Sehr,P., Pillai,R.S. and Carlomagno,T. (2011) Recognition of 2r-O-methylated 3r-end of piRNA by the PAZ domain of a Piwi protein. Structure, 19, 172–180.

51. Chin,C.S., Peluso,P., Sedlazeck,F.J., Nattestad,M., Concepcion,G.T., Clum,A., Dunn,C., O’Malley,R., Figueroa-Balderas,R., Morales-Cruz,A. et al. (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods, 13, 1050–1054.

52. Vaser,R., Sovic´,I., Nagarajan,N. and Sˇikic´,M. (2017) Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res., 27, 737–746.

53. Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34, 3094–3100.

54. Marc¸ais,G., Delcher,A.L., Phillippy,A.M., Coston,R., Salzberg,S.L. and Zimin,A. (2018) MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol., 14, e1005944.

55. Gurevich,A., Saveliev,V., Vyahhi,N. and Tesler,G. (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics, 29, 1072–1075.

56. Kent,W.J., Baertsch,R., Hinrichs,A., Miller,W. and Haussler,D. (2003) Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc. Natl. Acad. Sci. U.S.A., 100, 11484–11489.

57. Speir,M.L., Zweig,A.S., Rosenbloom,K.R., Raney,B.J., Paten,B., Nejad,P., Lee,B.T., Learned,K., Karolchik,D., Hinrichs,A.S. et al. (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res., 44, D717–725.

58. Popendorf,K., Tsuyoshi,H., Osana,Y. and Sakakibara,Y. (2010) Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes. PLoS One, 5, e12651.

59. Flynn,J.M., Hubley,R., Goubert,C., Rosen,J., Clark,A.G., Feschotte,C. and Smit,A.F. (2020) RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. U.S.A., 117, 9451–9457.

60. Ou,S. and Jiang,N. (2018) LTR retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol., 176, 1410–1422.

61. Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol., 30, 772–780.

62. Jurka,J., Kapitonov,V.V., Pavlicek,A., Klonowski,P., Kohany,O. and Walichiewicz,J. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res., 110, 462–467.

63. Iwasaki,Y.W., Ishino,K. and Siomi,H. (2017) Deep sequencing and high-throughput analysis of PIWI-associated small RNAs. Methods, 126, 66–75.

64. Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17, 3.

65. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.

66. Shen,W., Le,S., Li,Y. and Hu,F. (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One, 11, e0163962.

67. Kim,D., Langmead,B. and Salzberg,S.L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–360.

68. Pertea,M., Pertea,G.M., Antonescu,C.M., Chang,T.C., Mendell,J.T. and Salzberg,S.L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295.

69. Friedla¨nder,M.R., Mackowiak,S.D., Li,N., Chen,W. and Rajewsky,N. (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res., 40, 37–52.

70. Rosenkranz,D. and Zischler,H. (2012) proTRAC–a software for probabilistic piRNA cluster detection, visualization and analysis. BMC Bioinformatics, 13, 5.

71. Kim,D., Pertea,G., Trapnell,C., Pimentel,H., Kelley,R. and Salzberg,S.L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36.

72. Trapnell,C., Williams,B.A., Pertea,G., Mortazavi,A., Kwan,G., van Baren,M.J., Salzberg,S.L., Wold,B.J. and Pachter,L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515.

73. Bailey,T.L., Boden,M., Buske,F.A., Frith,M., Grant,C.E., Clementi,L., Ren,J., Li,W.W. and Noble,W.S. (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 37, W202–208.

74. Heinz,S., Benner,C., Spann,N., Bertolino,E., Lin,Y.C., Laslo,P., Cheng,J.X., Murre,C., Singh,H. and Glass,C.K. (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell, 38, 576–589.

75. Robinson,J.T., Thorvaldsdo´ttir,H., Winckler,W., Guttman,M., Lander,E.S., Getz,G. and Mesirov,J.P. (2011) Integrative genomics viewer. Nat. Biotechnol., 29, 24–26.

76. Siomi,M.C., Higashijima,K., Ishizuka,A. and Siomi,H. (2002) Casein kinase II phosphorylates the fragile X mental retardation protein and modulates its biological properties. Mol. Cell. Biol., 22, 8438–8447.

77. Waterhouse,R.M., Seppey,M., Sima˜o,F.A., Manni,M., Ioannidis,P., Klioutchnikov,G., Kriventseva,E.V. and Zdobnov,E.M. (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol., 35, 543–548.

78. Romanenko,S.A., Perelman,P.L., Trifonov,V.A. and Graphodatsky,A.S. (2012) Chromosomal evolution in Rodentia. Heredity (Edinb), 108, 4–16.

79. Kojima,K.K. (2018) Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA, 9, 2.

80. Vargiu,L., Rodriguez-Tome´,P., Sperber,G.O., Cadeddu,M., Grandi,N., Blikstad,V., Tramontano,E. and Blomberg,J. (2016) Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology, 13, 7.

81. Kaya,E., Doxzen,K.W., Knoll,K.R., Wilson,R.C., Strutt,S.C., Kranzusch,P.J. and Doudna,J.A. (2016) A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. U.S.A., 113, 4057–4062.

82. Sheng,G., Zhao,H., Wang,J., Rao,Y., Tian,W., Swarts,D.C., van der Oost,J., Patel,D.J. and Wang,Y. (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. U.S.A.,111, 652–657.

83. Baronti,L., Guzzetti,I., Ebrahimi,P., Friebe Sandoz,S., Steiner,E., Schlagnitweit,J., Fromm,B., Silva,L., Fontana,C., Chen,A.A. et al. (2020) Base-pair conformational switch modulates miR-34a targeting of Sirt1 mRNA. Nature, 583, 139–144.

84. Treiber,T., Treiber,N. and Meister,G. (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 20, 5–20.

85. Vourekas,A., Zheng,Q., Alexiou,P., Maragkakis,M., Kirino,Y., Gregory,B.D. and Mourelatos,Z. (2012) Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol., 19, 773–781.

86. Li,F., Yuan,P., Rao,M., Jin,C.H., Tang,W., Rong,Y.F., Hu,Y.P., Zhang,F., Wei,T., Yin,Q. et al. (2020) piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis. Nat. Cell Biol., 22, 425–438.

87. Shi,S., Yang,Z.Z., Liu,S., Yang,F. and Lin,H. (2020) PIWIL1 promotes gastric cancer via a piRNA-independent mechanism. Proc. Natl. Acad. Sci. U.S.A., 117, 22390–22401.

88. Elkayam,E., Kuhn,C.D., Tocilj,A., Haase,A.D., Greene,E.M., Hannon,G.J. and Joshua-Tor,L. (2012) The structure of human argonaute-2 in complex with miR-20a. Cell, 150, 100–110.

89. Molaro,A., Falciatori,I., Hodges,E., Aravin,A.A., Marran,K., Rafii,S., McCombie,W.R., Smith,A.D. and Hannon,G.J. (2014) Two waves of de novo methylation during mouse germ cell development. Genes Dev., 28, 1544–1549.

90. Pezic,D., Manakov,S.A., Sachidanandam,R. and Aravin,A.A. (2014) piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev., 28, 1410–1428.

91. Mandal,P.K. and Kazazian,H.H. Jr. (2008) SnapShot: vertebrate transposons. Cell, 135, 192–192.

92. Franke,V., Ganesh,S., Karlic,R., Malik,R., Pasulka,J., Horvat,F., Kuzman,M., Fulka,H., Cernohorska,M., Urbanova,J. et al. (2017) Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res., 27, 1384–1394.

93. Vasiliauskaite˙,L., Berrens,R.V., Ivanova,I., Carrieri,C., Reik,W., Enright,A.J. and O’Carroll,D. (2018) Defective germline reprogramming rewires the spermatogonial transcriptome. Nat. Struct. Mol. Biol., 25, 394–404.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る