リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system (本文)

吉松, 祥 慶應義塾大学

2020.03.23

概要

Genome editing technology greatly facilitates the genetic modification of various cells and animals. The common marmoset (Callithrix jacchus), a small non-human primate which exhibits high reproductive efficiency, is a widely used animal model in biomedical research. Developing genome editing techniques in the common marmoset will further enhance its utility. Here, we report the successful establishment of a knock-in (KI) method for marmoset embryonic stem cells (ESCs), which is based on the CRISPR- Cas9 system. The use of CRISPR-Cas9, mediated by homologous recombination (HR), enhanced the KI efficiency in marmoset ESCs. Furthermore, we succeeded in performing KI in early-stage marmoset embryos. In the course of the experiments, we found that HR in the marmoset ESCs is innately highly efficient. This suggested that the marmoset possesses a repair mechanism for DNA double-strand breaks. The current study will facilitate the generation of genetically modified marmosets and gene function analysis in the marmoset.

この論文で使われている画像

参考文献

1. Kakarougkas, A. & Jeggo, P. A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87, 20130685, https://doi.org/10.1259/bjr.20130685 (2014).

2. Davis, A. J. & Chen, D. J. DNA double strand break repair via non-homologous end-joining. Transl Cancer Res 2, 130–143, https:// doi.org/10.3978/j.issn.2218-676X.2013.04.02 (2013).

3. Li, X. & Heyer, W. D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18, 99–113, https://doi. org/10.1038/cr.2008.1 (2008).

4. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

5. Zwaka, T. P. & Thomson, J. A. Homologous recombination in human embryonic stem cells. Nat Biotechnol 21, 319–321, https://doi. org/10.1038/nbt788 (2003).

6. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278, https://doi.org/10.1016/j.cell.2014.05.010 (2014).

7. Carroll, D. Genome engineering with targetable nucleases. Annu Rev Biochem 83, 409–439, https://doi.org/10.1146/annurev- biochem-060713-035418 (2014).

8. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821, https://doi.org/10.1126/science.1225829 (2012).

9. Okano, H., Hikishima, K., Iriki, A. & Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin Fetal Neonatal Med 17, 336–340, https://doi.org/10.1016/j.siny.2012.07.002 (2012).

10. Kishi, N., Sato, K., Sasaki, E. & Okano, H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ 56, 53–62, https://doi.org/10.1111/dgd.12109 (2014).

11. Sasaki, E. et al. Generation of transgenic non-human primates with germline transmission. Nature 459, 523–527, https://doi. org/10.1038/nature08090 (2009).

12. Sato, K. et al. Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell 19, 127–138, https://doi.org/10.1016/j.stem.2016.06.003 (2016).

13. Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70 (1997).

14. Garbern, J. Y. Pelizaeus-Merzbacher disease: Genetic and cellular pathogenesis. Cell Mol Life Sci 64, 50–65, https://doi.org/10.1007/ s00018-006-6182-8 (2007).

15. Numasawa-Kuroiwa, Y. et al. Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Reports 2, 648–661, https://doi.org/10.1016/j.stemcr.2014.03.007 (2014).

16. Mimault, C. et al. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Dysmyelinating Disease. Am J Hum Genet 65, 360–369 (1999).

17. Shu, W. et al. Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development 134, 1991–2000, https://doi. org/10.1242/dev.02846 (2007).

18. French, C. A. et al. Generation of mice with a conditional Foxp2 null allele. Genesis 45, 440–446, https://doi.org/10.1002/dvg.20305 (2007).

19. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523, https://doi.org/10.1038/35097076 (2001).

20. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872, https://doi. org/10.1038/nature01025 (2002).

21. Zhu, X. D. & Sadowski, P. D. Cleavage-dependent ligation by the FLP recombinase. Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. J Biol Chem 270, 23044–23054 (1995).

22. Trofatter, J. A., Dlouhy, S. R., DeMyer, W., Conneally, P. M. & Hodes, M. E. Pelizaeus-Merzbacher disease: tight linkage to proteolipid protein gene exon variant. Proc Natl Acad Sci USA 86, 9427–9430 (1989).

23. Hashimoto, M. & Takemoto, T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/ Cas9-based genome editing. Sci Rep 5, 11315, https://doi.org/10.1038/srep11315 (2015).

24. Hashimoto, M., Yamashita, Y. & Takemoto, T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non- mosaic mutants in the mouse. Dev Biol 418, 1–9, https://doi.org/10.1016/j.ydbio.2016.07.017 (2016).

25. Remy, S. et al. Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Sci Rep 7, 16554, https://doi.org/10.1038/s41598-017-16328-y (2017).

26. Chen, F. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8, 753–755, https://doi.org/10.1038/nmeth.1653 (2011).

27. Oji, A. et al. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 6, 31666, https://doi.org/10.1038/srep31666 (2016).

28. Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27, 851–857, https://doi.org/10.1038/nbt.1562 (2009).

29. Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731–734, https://doi. org/10.1038/nbt.1927 (2011).

30. Sebastiano, V. et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29, 1717–1726, https://doi.org/10.1002/stem.718 (2011).

31. Rong, Z., Zhu, S., Xu, Y. & Fu, X. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell 5, 258–260, https://doi.org/10.1007/s13238-014-0032-5 (2014).

32. Blair, J. D., Bateup, H. S. & Hockemeyer, D. F. Establishment of Genome-edited Human Pluripotent Stem Cell Lines: From Targeting to Isolation. J Vis Exp, e53583, https://doi.org/10.3791/53583 (2016).

33. Takayama, K. et al. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res 45, 5198–5207, https://doi.org/10.1093/nar/gkx130 (2017).

34. Zhu, S., Rong, Z., Lu, X., Xu, Y. & Fu, X. Gene Targeting Through Homologous Recombination in Monkey Embryonic Stem Cells Using CRISPR/Cas9 System. Stem Cells Dev 24, 1147–1149, https://doi.org/10.1089/scd.2014.0507 (2015).

35. Gow, A., Gragerov, A., Gard, A., Colman, D. R. & Lazzarini, R. A. Conservation of topology, but not conformation, of the proteolipid proteins of the myelin sheath. J Neurosci 17, 181–189 (1997).

36. Garbern, J. & Hobson, G. Prenatal diagnosis of Pelizaeus-Merzbacher disease. Prenat Diagn 22, 1033–1035, https://doi.org/10.1002/ pd.465 (2002).

37. Tanaka, H. et al. Mice with altered myelin proteolipid protein gene expression display cognitive deficits accompanied by abnormal neuron-glia interactions and decreased conduction velocities. J Neurosci 29, 8363–8371, https://doi.org/10.1523/ JNEUROSCI.3216-08.2009 (2009).

38. Qin, W. et al. A family-based association study of PLP1 and schizophrenia. Neurosci Lett 375, 207–210, https://doi.org/10.1016/j. neulet.2004.11.013 (2005).

39. Enard, W. et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–971, https://doi. org/10.1016/j.cell.2009.03.041 (2009).

40. Schreiweis, C. et al. Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance. Proc Natl Acad Sci USA 111, 14253–14258, https://doi.org/10.1073/pnas.1414542111 (2014).

41. Petrides, M. & Pandya, D. N. Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7, e1000170, https://doi.org/10.1371/journal.pbio.1000170 (2009).

42. Simoes, C. S. et al. Activation of frontal neocortical areas by vocal production in marmosets. Front Integr Neurosci 4, https://doi. org/10.3389/fnint.2010.00123 (2010).

43. Miller, C. T., Thomas, A. W., Nummela, S. U. & de la Mothe, L. A. Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol 114, 1158–1171, https://doi.org/10.1152/jn.01003.2014 (2015).

44. Sasaki, E. et al. Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23, 1304–1313, https://doi.org/10.1634/stemcells.2004-0366 (2005).

45. Shiozawa, S. et al. Gene targeting and subsequent site-specific transgenesis at the beta-actin (ACTB) locus in common marmoset embryonic stem cells. Stem Cells Dev 20, 1587–1599, https://doi.org/10.1089/scd.2010.0351 (2011).

46. Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123, https://doi.org/10.1093/bioinformatics/btu743 (2015).

47. Ichiyanagi, N. et al. Establishment of In Vitro FUS-Associated Familial Amyotrophic Lateral Sclerosis Model Using Human Induced Pluripotent Stem Cells. Stem Cell Reports 6, 496–510, https://doi.org/10.1016/j.stemcr.2016.02.011 (2016).

48. Shimada, H. et al. Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells. PLoS One 7, e49469, https://doi.org/10.1371/journal.pone.0049469 (2012).

49. Tomioka, I., Takahashi, T., Shimada, A., Yoshioka, K. & Sasaki, E. Birth of common marmoset (Callithrix jacchus) offspring derived from in vitro-matured oocytes in chemically defined medium. Theriogenology 78, 1487–1493, https://doi.org/10.1016/j. theriogenology.2012.06.024 (2012).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る