リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Biochemical characterizations and food applications of carbohydrate active enzymes secreted from microorganisms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Biochemical characterizations and food applications of carbohydrate active enzymes secreted from microorganisms

Sakai, Kiyota 京都大学 DOI:10.14989/doctor.r13567

2023.07.24

概要

Hemicellulose is the second most abundant polysaccharide found in nature, and it is
usually associated with cellulose and lignin in plant cell walls[1,2]. The β-mannans
(glucomannan, galactomannan, and galactoglucomannan) together with xylans are the major
components of hemicelluloses[3,4]. Ivory nuts, konjac, coffee beans, softwoods, and red algae
are especially abundant in β-mannans[5-10]. Glucomannan comprises a β-1,4-linked backbone
containing mannose, or a combination of glucose and mannose residues, and it is acetylated
at the O-2 and/or O-3 positions[11,12]. Galactomannan and galactoglucomannan have branched
galactose side chains linked to the backbone mannoses by an α-1,6-bond[13]. Glucomannan
from konjac and galactomannan from guar gum are storage polysaccharides that are useful in
the food industry[14,15].
Mannanolytic enzymes are important reagents in industrial biorefinery processes
such as the production of second-generation biofuels from plant biomass[16]. The complete
degradation of complex β-mannans requires the synergistic action of a set of mannanolytic
enzymes with various substrate specificities. Filamentous fungi produce several
mannanolytic enzymes including β-1,4-mannanase (EC 3.2.1.78), α-galactosidase (EC
3.2.1.22), β-mannosidase (EC 3.2.1.25), acetylmannan esterase (EC 3.1.1.6), and
βglucosidase (EC 3.2.1.21)[13,17,18]. ...

この論文で使われている画像

参考文献

1.

Sakai, K., Mochizuki M., Yamada, M., Shinzawa, Y., Minezawa, M., Kimoto, S. et al.

Biochemical characterization of thermostable β-1,4-mannanase belonging to the

glycoside hydrolase family 134 from Aspergillus oryzae. Applied Microbiology and

Biotechnology 101, 3237–3245 (2017).

2.

Sakai, K., Kimoto, S., Shinzawa, Y., Minezawa, M., Suzuki, K., Jindou, S. et al.

Characterization of pH-tolerant and thermostable GH 134 β-1,4-mannanase SsGH134

possessing carbohydrate binding module 10 from Streptomyces sp. NRRL B-24484.

Journal of Bioscience and Bioengineering 125, 287-294 (2018).

3.

Sakai, K.*, Sato, Y., Okada, M., Yamaguchi, S. Improved functional properties of meat

analogs by laccase catalyzed protein and pectin crosslinks. Scientific Reports 11, 16631

(2021).

4.

Sakai, K.*, Sato, Y., Okada, M., Yamaguchi, S. Synergistic effects of laccase and pectin

on the color changes and functional properties of meat analogs containing beet red

pigment. Scientific Reports 12, 1168 (2022).

5.

Sakai, K.*, Sato, Y., Okada, M., Yamaguchi, S. Cyclodextrins produced by cyclodextrin

glucanotransferase mask beany off-flavors in plant-based meat analogs. PLoS One 17,

e0269278 (2022).

*Corresponding author

141

List of related publications

1.

Shimizu, M., Kaneko, Y., Ishihara, S., Mochizuki, M., Sakai, K., Yamada, M. et al.

Novel β-1,4-mannanase belonging to a new glycoside hydrolase family in Aspergillus

nidulans. Journal of Biological Chemistry 290, 27914-27 (2015).

2.

Muraguchi, H., Umezawa, K., Yoshida, M., Kozaki, T., Ishii, K., Sakai, K. Strandspecific RNA-seq analyses of fruiting body development in Coprinopsis cinerea. PLoS

One 10, e0141586 (2015).

3.

Shimizu, M., Yamamoto, T., Okabe, N., Sakai, K., Koide, E., Miyachi, Y. et al. Novel 4methyl-2-oxopentanoate reductase involved in synthesis of the Japanese sake flavor,

ethyl leucate. Applied Microbiology and Biotechnology 100, 3137-3145 (2016).

4.

Sakai, K., Kojiya, S., Kamijo, J., Tanaka, Y., Tanaka, K., Maebayashi, M. et al. Oxygenradical pretreatment promotes cellulose degradation by cellulolytic enzymes.

Biotechnology for Biofuels 10, 290 (2017).

5.

Sakai, K., Matsuzaki, F., Wise, L., Sakai, Y., Jindou, S., Ichinose, H. et al. Biochemical

characterization of CYP505D6, a self-sufficient cytochrome P450 from the white-rot

fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology 84,

e01091-18 (2018).

6.

Kamijo, J.†, Sakai, K.†, Suzuki, H., Suzuki, K., Kunitake, E., Shimizu, M. et al.

Identification and characterization of a thermostable pectate lyase from Aspergillus

luchuensis var. saitoi. Food Chemistry 276, 503-510 (2019).

7.

Tsutsumi, S., Mochizuki, M., Sakai, K., Ieda, A., Ohara, R., Mitsui, S. et al. Ability of

Saccharomyces cerevisiae MC87-46 to assimilate isomaltose and its effects on sake taste.

Scientific Reports 9, 13908 (2019).

142

8.

Ito, S.†, Sakai, K.†, Gamaleev, V., Ito, M., Hori, M., Kato, M. et al. Oxygen radical based

on non-thermal atmospheric pressure plasma alleviates lignin-derived phenolic toxicity

in yeast. Biotechnology for Biofuels 13, 18 (2020).

9.

Sakai, K., Yamaguchi, A., Tsutsumi, S., Kawai, Y., Tsuzuki, S., Suzuki, H. et al.

Characterization of FsXEG12A from the cellulose-degrading ectosymbiotic fungus

Fusarium spp. strain EI cultured by the ambrosia beetle. AMB Express 10, 96 (2020).

10. Ito, S.†, Sakai, K.†, Iwata, N., Ito, M., Hori, M., Kato, M. et al. Enhanced bioremediation

of 4-chlorophenol by electrically neutral reactive species generated from nonthermal

atmospheric-pressure plasma. ACS Omega 7, 16197-16203 (2022).

11. Sakai, K.*, Sato, Y., Okada, M., Yamaguchi, S. Enhanced activity and stability of

protein-glutaminase by Hofmeister effects. Molecular Catalysis 517, 112054 (2022).

12. Sakai, K.*, Okada, M., Yamaguchi, S. Decolorization and detoxication of plant-based

proteins using hydrogen peroxide and catalase. Scientific Reports 12, 22432 (2022).

Contributed equally

*Corresponding author

143

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る