リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Interaction analysis between lignin and carbohydrate-binding module of cellobiohydrolase I from Trichoderma reesei」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Interaction analysis between lignin and carbohydrate-binding module of cellobiohydrolase I from Trichoderma reesei

Tokunaga, Yuki 京都大学 DOI:10.14989/doctor.k23238

2021.03.23

概要

有限な化石資源の代替として再生可能なリグノセルロース資源からバイオ燃料や化成品を効率的に製造する技術の実現が求められる。代表的なリグノセルロースの変換手法として前処理に続く酵素糖化、発酵プロセスが挙げられるが、その過程でセルラーゼ等の多糖分解酵素がリグニンに吸着し糖化効率が減少することが課題となっている。特にセルラーゼの糖質結合モジュール(CBM)がリグニンとの非生産的吸着に大きく影響することが知られているものの、その詳細な相互作用メカニズムは明らかにされていない。本研究では工業的に重要な糸状菌Trichoderma reesei由来セロビオヒドロラーゼI(Cel7A)のCBM1(TrCBM1)に着目し、リグニンとTrCBM1間の相互作用メカニズムを分子レベルで明らかにすることを目的とした。

1. TrCBM1のリグニンとの相互作用部位の解析
第1章ではTrCBM1のリグニンに対する吸着部位を明らかにする目的で、安定同位体標識したTrCBM1を用いてNMR化学シフト摂動法(CSP法)による解析を行った。His-tag-TrCBM1-GFP融合タンパク質を大腸菌BL21(DE3)株で発現し、単一窒素源として15NH4Clを含んだM9培地で培養した。菌体破砕、タンパク質精製後にHis-tagおよびGFP部位を切断し、15Nラベル化TrCBM1を取得した。得られた15Nラベル化TrCBM1はSDS-PAGEおよびMALDI-TOF-MSでシングルバンド、単一ピークとして観測された。また、2D 1H-15N HSQC NMRスペクトルにて15Nラベル化TrCBM1が正常フォールディングしていることが示された。CSP実験では15Nラベル化TrCBM1の2D1 H-15N SOFAST-HMQC NMRスペクトルを観測しつつ、遊離の糖鎖を除去精製したスギおよびユーカリのリグニン(MWL)、またはセロヘキサオースを滴定することで、吸着に関与するアミノ酸残基由来NMRシグナルの摂動が観測された。滴定剤がMWLとセロヘキサオースのどちらの場合でもY5、Y31、Y32周辺のアミノ酸残基が大きな摂動を示した。TrCBM1は上記のチロシン残基を中心とした平滑面でセルロースと吸着することが知られており、同様の吸着部位でリグニンとも相互作用することを見出した。一方で、平滑面とは反対に位置するT17、V18、T24を中心としたクレフト構造でのMWL、セロヘキサオースとの相互作用も観測された。MWLを滴定した際にはG6およびQ7のNMRシグナルが消失し、平滑面でのより顕著な相互作用が示された。セロヘキサオースを滴定した際にはN29およびQ34での相互作用が特徴的に観測された。セロヘキサオース添加時は平滑面およびクレフト構造での相互作用は選択的であったが、MWL添加時は平滑面とクレフト構造に加え、TrCBM1の幅広い表層アミノ酸における相互作用が観測された。また、ユーカリのMWLを滴定した場合と比較して、スギMWLを滴定した際にはTrCBM1のより多様なアミノ酸残基との相互作用が観測され、針葉樹と広葉樹リグニンでの違いを見出した。

2. β-O-4結合型リグニンオリゴマーモデルのNMRシグナル帰属と高次構造の解析
第2章ではリグニン側の吸着部位の解析に先立ち、β-O-4結合型リグニンオリゴマーモデルを合成し、NMRシグナルの帰属および高次構造解析を行った。リグニンモデルのNMRシグナルは、1D1H、13CNMR、2D 1H-13C HSQC、2D 1H-13C HMBCおよび2D 1H-13C LR-HSQMBCスペクトルの測定により全てのCと非交換性Hについて帰属した。合成したリグニンモデル(Mw:553-964)は13CNMRスペクトルからエリスロ型のみで構成されていることが示唆された。2D 1H-1H ROESYを用いてリグニンモデルの高次構造を解析すると、DMSO-d6およびDMSO-d6/酢酸バッファー(D2O、pD5.0)混合液(1:9、v/v)の両溶媒中においてやや丸まった高次構造を持つことが示された。DMSO-d6とD2Oを比較すると、D2O中でよりコンパクトな高次構造が観測された。リグニンモデルはジアステレオマーを有しており、それらのA環およびB環の配向は類似しているものの、C環末端の配向が異なることを見出した。

3.β-O-4結合型リグニンオリゴマーモデルのTrCBM1との結合部位の解析
 第3章では13Cラベル化β-O-4結合型リグニンオリゴマーモデルを合成し、CSP法を用いてリグニンモデルのTrCBM1に対する相互作用部位を解析した。異なる13Cラベル化部位を持つバニリンおよび13C-t-ブチル-2-ブロモアセテートを用いて、(1)芳香環およびβ位、(2)α位、(3)メトキシル基の炭素がそれぞれ安定同位体標識された13Cラベル化リグニンモデルを合成した。次いで、シリカゲルカラムクロマトグラフィーにより合成された13Cラベル化リグニンモデルを高分子画分(Mw:818-923、重合度:4.16-4.70)および低分子画分(Mw:520-614、重合度:2.64-3.12)に分離精製した。CSP実験においては13Cラベル化リグニンモデルの2D 1H-13C HSQCスペクトルを観測しつつTrCBM1を添加することで、高分子リグニンモデルの芳香環由来NMRシグナルが摂動を示した。一方で、脂肪族やメトキシル基由来のNMRシグナルは変化しなかったため、リグニンモデルが芳香環を中心にTrCBM1と相互作用することが示された。また、低分子リグニンモデルはTrCBM1添加時に芳香環由来のシグナルを含め、すべてのNMRシグナルにおいて明確なシグナルの摂動は観測されなかった。従って、重合度4以上がTrCBM1との顕著な相互作用に必要であることが示された。ノンラベルリグニンモデルとTrCBM1を用いた吸着実験において、高分子リグニンモデル(Mw:964、重合度:4.91)のラングミュア結合定数は36.3mL/mgであった。これは低分子ノンラベルリグニンモデル(Mw:560、重合度:2.85)よりも8.1倍高い値であり、高分子リグニンモデルがTrCBM1と顕著な相互作用を示したCSP実験の結果と一致する。

 以上の相互作用解析により、TrCBM1とリグニン間の相互作用メカニズムについて、以下のように考察した。即ち、TrCBM1のY5、Y31、Y32周辺の平滑面がリグニンと吸着した点と、リグニンオリゴマーモデルにおいては主に芳香環がTrCBM1と相互作用を示した点から、芳香環同士の疎水性相互作用やπ-πスタッキングが、TrCBM1とリグニン間の主要な相互作用である。一方でTrCBM1は、Q7等の親水的なアミノ酸残基を介してもリグニンと相互作用し、平滑面およびクレフト構造を中心にタンパク質表層上の広い領域でリグニンと相互作用することから、疎水性相互作用やπ-πスタッキングに加え、静電相互作用や水素結合も関与した複合的な機構でリグニンと吸着する。また、TrCBM1の平滑面とクレフト構造に選択的に吸着したセロヘキサオースとは異なり、リグニンはTrCBM1の平滑面とクレフト構造を含めた幅広いタンパク質表層アミノ酸残基と相互作用する。

この論文で使われている画像

参考文献

Abbati de Assis, C., Greca, L.G., Ago, M., Balakshin, M.Y., Jameel, H., Gonzalez, R., Rojas, O.J. (2018) Techno-economic assessment, scalability, and applications of aerosol lignin micro- and nanoparticles. ACS Sustain. Chem. Eng. 6:11853-68.

Amore, A., Knott, B.C., Supekar, N.T., Shajahan, A., Azadi, P., Zhao, P., Wells, L., Linger, J.G., Hobdey, S.E., Wall, T.A.V., Shollenberger, T., Yarbrough, J.M., Tan, Z., Crowley, M.F., Himmel, M.E., Decker, S.R., Beckham, G.T., Taylor, L.E., II. (2017) Distinct roles of N- and O-glycans in cellulase activity and stability. Proc. Natl. Acad. Sci. U S A. 114:13667-13672.

Arslan, B., Colpan, M., Ju, X., Zhang, X., Kostyukova, A., Abu-Lail, N.I. (2016) The Effects of noncellulosic compounds on the nanoscale interaction forces measured between carbohydrate-binding module and lignocellulosic biomass. Biomacromolecules. 17:1705-1715.

Auxenfans, T., Crônier, D., Chabbert, B., Paës, G. (2017) Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol. Biofuels. 10:36

Bardet, M., Robert, D., Lundquist, K., von Unge, S. (1998) Distribution of erythro and threo forms of different types of -O-4 structures in aspen lignin by 13C NMR using the 2D INADEQUATE experiment. Mgn. Reson. Chem. 36:597-600.

Besombes, S., Utille, J.P., Mazeau, K., Robert, D., Taravel, F.R. (2004) Conformational study of a guaiacyl -O-4 lignin model compound by NMR. Examination of intramolecular hydrogen bonding interactions and conformational flexibility in solution. Magn. Reson. Chem. 42:337-47.

Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., Saddler, J. (2006) Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125:198-209.

Boraston, A.B., Bolam, D.N., Gilbert, H.J., Davies, G.J. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382:769-781.

Börjesson, J., Engqvist, M., Sipos, B., Tjerneld, F. (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocellulose. Enzyme Microb. Technol. 41:186-195Brondi, M.G., Vasconcellos, V.M., Giordano, R.C., Farinas, C.S. (2019) Alternative low-cost additives to improve the saccharification of lignocellulosic biomass. Appl. Biochem. Biotechnol. 187:461-473.

Brunecky, R., Subramanian, V., Yarbrough, J.M., Donohoe, B.S., Vinzant, T.B., Vanderwall, T.A., Knott, B.C., Chaudhari, Y.B., Bomble, Y.J., Himmel, M.E., Decker, S.R. (2020) Synthetic fungal multifunctional cellulases for enhanced biomass conversion. Green Chem. 22:478-89.

Cai, C., Zhan, X., Zeng, M., Lou, H., Pang, Y., Yang, J., Yang, D., Qiu, X. (2017) Using recyclable pH-responsive lignin amphoteric surfactant to enhance the enzymatic hydrolysis of lignocelluloses. Green Chem. 19:5479.

Cai, C., Hirth, K., Gleisner, R., Lou, H., Qiu, X., Zhu, J.Y. (2020a) Maleic acid as a dicarboxylic acid hydrotrope for sustainable fractionation of wood at atmospheric pressure and ≤100℃: mode and utility of lignin esterification. Green Chem. 22:1605.

Cai, C., Bao, Y., Jin, Y., Li, F., Pang, Y., Lou, H., Qian, Y., Qiu, X. (2020b) Preparation of high molecular weight pH-responsive ligninpolyethylene glycol (L-PEG) and its application in enzymatic saccharification of lignocelluloses. Cellulose. 27:755-767.

Cai, C., Bao, Y., Li, F., Pang, Y., Lou, H., Qian, Y., Qiu, X. (2020 c) Using highly recyclable sodium caseinate to enhance lignocellulosic hydrolysis and cellulase recovery. Bioresour. Technol. 304:122974.

Chen, H., Jiang, B., Wu, W., Jin, Y. (2020) Comparison of enzymatic saccharification and lignin structure of masson pine and poplar pretreated by p-Toluenesulfonic acid. Int. J. Biol. Macromol. 151:861-869.

Crestini, C., Melone, F., Sette, M., Saladino, R. (2011) Milled wood lignin: a linear oligomer. Biomacromolecules. 12:3928-35.

Czjzek, M., Bolam, D.N., Mosbah, A., Allouch, J., Fontes, C.M.G.A., Ferreira, L.M.A., Bornet, O., Zamboni, V., Darbon, H., Smith, N.L., Black, G.W., Henrissat, B., Gilbert, H.J. (2001) The location of the ligand-binding site of carbohydrate-binding modules that have evolved from a common sequence is not conserved. J. Biol. Chem. 276:48580-48587.

Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR. 6:277-293.

Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H., Qiu, X. (2011) Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules. 12:1116-1125.

Dien, B.S., Miller, D.J., Hector, R.E., Dixon, R.A., Chen, F., McCaslin, M., Reisen, P., Sarath, G., Cotta, M.A. (2011) Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresour. Technol. 102:6479-86.

Ding, R., Wu, H., Thunga, M., Bowler, N., Kessler, M.R. (2016) Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends. Carbon. 100:126-36.

Djajadi, D.T., Jensen, M.M., Oliveira, M., Jensen, A., Thygesen, L.G., Pinelo, M. Glasius, M., Jørgensen, H., Meyer, A.S. (2018) Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes. Biotechnol. Biofuels. 11:85.

Dong, R, Zheng, D, Yang, D., Qiu, X. (2019) pH-responsive lignin-based magnetic nanoparticles for recovery of cellulase. Bioresour. Technol. 294:122133.

Egan, D.A., Logan, T.M., Liang, H., Matayoshi, E., Fesik, S.W., Holzman, T.F. (1993) Equilibrium denaturation of recombinant human FK binding protein in urea. Biochemistry. 32:1920-1927.

Eriksson, T., Borjesson, J. Tjerneld, F. (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Tech. 31:353-364.

Farmer, B. T., 2nd, Constantine, K.L., Goldfarb, V., Friedrichs, M.S., Wittekind, M., Yanchunas, J., Jr., Robertson, J.G., Mueller, L. (1996) Localizing the NADP+ binding site on the MurB enzyme by NMR. Nat. Struct. Biol. 3:995-997.

Fritz, C., Salas, C., Jameel, H., Rojas, O.J. (2017) Self-association and aggregation of kraft lignins via electrolyte and nonionic surfactant regulation: stabilization of lignin particles and effects on filtration. Nord. Pulp Paper Res. J. 32:572-585.

Garver, T.M., Maa, K.J., Marat, K. (1996) Conformational analysis and 2D NMR assignment strategies for lignin model compounds. The structure of acetoguaiacyl- dehydro-diisoeugenol methyl ether. Can. J. Chem. 74:173-84.

Grondin, J.M., Chitayat, S., Ficko-blean, E., Houliston, S., Arrowsmith, C.H., Boraston, A.B., Smith, S.P. (2014) An unusual mode of galactose recognition by a family 32 carbohydrate-binding module. J. Mol. Biol. 424:869-880.

Grondin, J.M., Langelaan, D.N., Smith, S.P. (2017) Characterization of protein- carbohydrate interactions by NMR spectroscopy. Methods Mol. Biol. 1588:143-156

Guo, F., Shi, W., Sun, W., Li, X., Wang, F., Zhao, J., Qu, Y. (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol. Biofuels. 7:38.

Guo, J., Catchmark, J.M. (2013) Binding specificity and thermodynamics of cellulose- binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules. 14:1268-1277.

Hao, X., Li, Y., Wang, J., Qin, Y., Zhang, J. (2019) Adsorption and desorption of cellulases on/from lignin-rich residues from corn stover. Ind. Crops Prod. 139:111559.

Hassanpour, M., Abbasabadi, M., Gebbie, L., Te’o, V.S.J., O’Hara, I.M. Zhang, Z. (2020) Acid-catalyzed glycerol pretreatment of sugarcane bagasse: understanding the properties of lignin and its effects on enzymatic hydrolysis. ACS Sustain. Chem. Eng. 8:10380-10388.

Heiss-Blanquet, S., Zheng, D., Ferreira, N.L., Lapierre, C., Baumberger, S. (2011) Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresour. Technol. 102:5938- 5946.

Hettle, A., Fillo, A., Abe, K., Massel, P., Pluvinage, B., Langelaan, D.N., Smith, S.P., Boraston, A.B. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of -1,3-glucan. J. Biol. Chem. 292:16955- 16968.

Huang, C., He, J., Min, D., Lai, C., Yong, Q. (2016) Understanding the nonproductive enzyme adsorption and physicochemical properties of residual lignins in moso bamboo pretreated with sulfuric acid and kraft pulping. Appl. Biochem. Biotechnol. 180:1508-1523.

Itoh, H., Wada, M., Honda, Y., Kuwahara, M., Watanabe, T. (2003), Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J. Biotechnol. 103:273-280.

Johnson, B. A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods. Mol. Biol. 278:313-352.

Kaiho, A., Mazzarella, D., Satake, M., Kogo, M., Sakai, R., Watanabe, T. (2016) Construction of the di(trimethylolpropane) cross linkage and the phenylnaphthalene structure coupled with selective -O-4 bond cleavage for synthesizing lignin-based epoxy resins with a controlled glass transition temperature. Green Chem. 18:6526- 35.

Katahira, R., Kamitakahara, H., Takano, T., Nakatsubo, F. (2006) Synthesis of β-O- 4 type oligomeric lignin model compound by the nucleophilic addition of carbanion to the aldehyde group. J. Wood Sci. 52:255-60.

Kellock, M., Maaheimo, H., Marjamaa, K., Rahikainen, J., Zhang, H., Holopainen- Mantila, U., Ralph, J., Tamminen, T., Felby, C., Kruus, K. (2019) Effect of hydrothermal pretreatment severity on lignin inhibition in enzymatic hydrolysis. Bioresour. Technol. 280:303-312.

Kishimoto, T., Uraki, Y., Ubukata, M. (2008) Synthesis of -O-4-type artificial lignin polymers and their analysis by NMR spectroscopy. Org. Biomol. Chem. 6:2982-7.

Kobayashi, N., Iwahara, J., Koshiba, S., Tomizawa, T., Tochio, N., Guntert, P., Kigawa, T., Yokoyama, S. (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J. Biomol. NMR. 39:31-52.

Kobayashi, N., Harano, Y., Tochio, N., Nakatani, E., Kigawa, T., Yokoyama, S., Mading, S., Ulrich, E.L., Markley, J.L., Akutsu, H., Fujiwara, T. (2012) An automated system designed for large scale NMR data deposition and annotation: application to over 600 assigned chemical shift data entries to the BioMagResBank from the Riken Structural Genomics/Proteomics Initiative internal database. J. Biomol. NMR. 53:311-320.

Kraulis, P.J., Clore, G.M., Nilges, M., Jones, T.A., Pettersson, G., Knowles, J., Gronenborn, A.M. (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochem. 28:7241-7257.

Lai, C., Tang, S., Yang, B., Gao, Z., Li. X., Yong, Q. (2017) Enhanced enzymatic saccharification of corn stover by in situ modification of lignin with poly (ethylene glycol) ether during low temperature alkali pretreatment. Bioresour. Technol. 244:92- 99.

Lan, T., Jiang, Y., Zheng, W., Wang, S., Sang, S., Li, H. (2020) Comprehensively understanding enzymatic hydrolysis of lignocellulose and cellulase–lignocellulose adsorption by analyzing substrates physicochemical properties. Bioenerg. Res. 13:1108-1120.

Lancefield, C.S., Ojo, O.S., Tran, F., Westwood, N.J. (2015) Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the -O- 4 linkages in lignin. Angew. Chem. Int. Ed. Engl. 54:258-62.

Lee, S.H., Doherty, T.V., Linhardt, R.J., Dordick, J.S. (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioengineer. 102:1368-1376.

Li, M., Yi, L., Bin, L., Zhang, Q., Song, J., Jiang, H., Chen, C., Wang, S., Min, D. (2020) Comparison of nonproductive adsorption of cellulase onto lignin isolated from pretreated lignocellulose. Cellulose. 27:7911-7927.

Lievonen, M., Valle-Delgado, J.J., Mattinen, M.-L., Hult, E.-L., Lintinen, K., Kostiainen, M.A., Paananen, A., Szilvay, G.R., Setälä, H., Österberg, M. (2016) A simple process for lignin nanoparticle preparation. Green Chem. 18:1416-22.

Lin, W., Chen, D., Yong, Q., Huang, C., Huang, S. (2019) Improving enzymatic hydrolysis of acid-pretreated bamboo residues using amphiphilic surfactant derived from dehydroabietic acid. Bioresour. Technol. 293:122055.

Lin, X., Wu, L., Huang, S., Qin, Y., Qiu, X., Lou, H. (2019) Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose. Carbohydr. Polym. 207:52-58.

Linder, M., Mattinen, M.L., Kontteli, M., Lindeberg, G., Stahlberg, J., Drakenberg, T., Reinikainen, T., Pettersson, G., Annila, A. (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci. 4:1056-1064.

Liu, Y.N., Lai, Y.T., Chou, W.I., Chang, M.D., Lyu, P.C. (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem. J. 403:21-30.

Lou, H., Zhu, J.Y., Lan, T.Q., Lai, H., Qiu, X. (2013) pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem. 6:919-927.

Lou, H., Lin, M., Zeng, M., Cai, C., Pang, Y., Yang, D., Qiu, X. (2018) Effect of urea on the enzymatic hydrolysis of lignocellulosic substrate and its mechanism. Bioenergy Res. 11:456-465.

Lu, X., Feng, X., Li, X., Zhano, J. (2018) Binding and hydrolysis properties of engineered cellobiohydrolases and endoglucanases. Bioresour. Technol. 267:235-241.

Mattinen, M.L., Linder, M., Teleman, A., Annila, A. (1997) Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett. 407:291-296.

Mokomele, T., Sousa, L.C., Balan, V., Rensburg, E., Dale, B.E., Görgens J.F. (2018) Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefneries. Biotechnol. Biofuels. 11:127

Mou, H., Huang, J., Li, W., Wu, X., Liu, Y., Fan, H. (2020) Study on the chemical modification of alkali lignin towards for cellulase adsorbent application. Int. J. Biol. Macromol. 149:794-800.

Mulakala, C., Reilly, P.J. (2005) Hypocrea jecorina (Trichoderma reesei) Cel7A as a molecular machine: A docking study. Proteins. 60:598-605.

Nagata, T., Suzuki, S., Endo, R., Shirouzu, M., Terada, T., Inoue, M., Kigawa, T., Kobayashi, N., Guntert, P., Tanaka, A., Hayashizaki, Y., Muto, Y., Yokoyama, S. (2008) The RRM domain of poly(A)-specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition. Nucleic. Acids Res. 36:4754-4767.

Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K. (2010) Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energ. Rev. 14:578-597.

Nakagame, S., Chandra, R.P., Saddler, J.N. (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol. Bioeng. 105:871-879.

Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. (2011) Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin. Biotechnol. Bioeng. 108:538-48.

Nidetzky, B., Steiner, W., Hayn, M., Claeyssens, M. (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem. J. 298:705-10.

Nimlos, M.R., Beckham, G.T., Matthews, J.F., Bu, L., Himmel, M.E., Crowley, M.F. (2012) Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on Cellulose. J. Biol. Chem. 287:20603- 20612.

Oshiro, S., Yamaguchi, A., Watanabe, T. (2017) Binding behaviour of a 12-mer peptide and its tandem dimer to gymnospermae and angiospermae lignins. RSC Advances. 7:31338-31341.

Pace, C.N., Vajdos, F., Fee, L., Grimsley, G., Gray, T. (1995) How to measure and predict the molar absorption-coefficient of a protein. Protein Sci. 4:2411-2423.

Pakarinen, A., Haven, M.O., Djajadi, D.T., Varnai, A., Puranen, T., Viikari, L. (2014) Cellulases without carbohydrate-binding modules in high consistency ethanol production process. Biotechnol. Biofuels. 7:27.

Palonen, H., Tenkanen, M. Linder, M. (1999) Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl. Environ. Microbiol. 65:5229-5233.

Palonen, H., Tjerneld, F., Zacchi, G., Tenkanen, M. (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J. Biotechnol. 107:65-72.

Pan, X., Arato, C., Gilkes, N., Gregg, D., Mabee, W., Pye, K., Xiao, Z., Zheang, X., Saddler, J. (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluationof process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol. Bioeng. 90:473-481.

Papa, G., Varanasi, P., Sun, L., Cheng, G., Stavila, V., Holmes, B., Simmons, B.A., Adani, F., Singh, S. (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour. Technol. 117:352-9.

Pareek, N., Gillgren, T., Jönsson, L.J. (2013) Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresour. Technol. 148:70-77.

Parsell, T.H., Owen, B.C., Klein, I., Jarrell, T.M., Marcum, C.L., Haupert, L.J., Amundson, L.M., Kenttämaa, H.I., Ribeiro, F., Miller, J.T., Abu-Omar, M.M. (2013) Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem. Sci. 4:806-13.

Petridis, L., Smith, J.C. (2016) Conformations of low-molecular-weight lignin polymers in water. ChemSusChem. 9:289-95.

Ragauskas, A. J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., Wyman, C.E. (2014) Lignin valorization: improving lignin processing in the biorefinery. Science. 344:709-719.

Rahikainen, J.L., Evans, J.D., Mikander, S., Kalliola, A., Puranen, T., Tamminen, T., Marjamaa, K., Kruus, K. (2013 a) Cellulase-lignin interactions-the role of carbohydrate-binding module and pH in non-productive binding. Enzyme Microb. Technol. 53:315-321.

Rahikainen, J.L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O.J., Kruus, K. (2013 b) Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresour. Technol. 133:270-8.

Rahikainen, J.L., Moilanen, U., Nurmi-Rantala, S., Lappas, A., Koivula, A., Viikari, L., Kruus, K. (2013 c) Effect of temperature on lignin-derived inhibition studied with three structurally different cellobiohydrolases. Bioresour. Technol. 146:118-25.

Ralph, J., Marita, J.M., Ralph, S.A., Hatfield, R.D., Lu, F., Ede, R.M., Peng, J., Landucci, L.L. (1999) Solution state NMR of lignins. In: Advances in lignocellulosics characterization. Ed. Atlanta, G. TAPPI Press. pp. 55-108.

Reinikainen, T., Teleman, O., Teeri, T.T. (1995) Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins. 22:392-403.

Robert, E.I., Richard, H.M., Alvin, K.W. (1976) The ester enolate claisen rearrangement. stereochemical control through stereoselective enolate formation. J. Am. Chem. Soc. 98:2868-77.

Romani, A., Ruiz, H.A., Teixeira, J.A., Domingues, L. (2016) Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach, Renew. Energ. 95:1-9.

Schanda, P., Kupce, E., Brutscher, B. (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR. 33:199-211.

Scharpf, M., Connelly, G.P., Lee, G.M., Boraston, A.B., Warren, R.A.J., McIntosh, L.P. (2002) Site-specific characterization of the association of xylooligosaccharides with the CBM13 lectin-like xylan binding domain from Streptomyces lividans xylanase 10A by NMR spectroscopy. Biochem. 41:4255-4263.

Seiboth, B., Ivanova, C., Seidl-Seiboth, V. (2011) Trichoderma reesei: A fungal enzyme producer for cellulosic biofuels. In: Biofuel production-recent developments and prospects. Ed. Dos Santos Bernardes MA. Rijeka, Intech, 309-340.

Shen, Y., Delaglio, F., Cornilescu, G., Bax, A. (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR. 44:213-223.

Shinya, S., Nishimura, S., Kitaoku, Y., Numata, T., Kimoto, H., Kusaoke, H., Ohnuma, T., Fukamizo, T. (2016) Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase. Biochem. J. 473:1085-1095.

Silva, A.S.A, Inoue, H., Endo, T., Yano, S., Bon, E.P. (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour. Technol. 101:7402-7409.

Silveira, R.L., Stoyanov, S.R., Gusarov, S., Skaf, M.S., Kovalenko, A. (2015) Supramolecular interactions in secondary plant cell walls: Effect of lignin chemical composition revealed with the molecular theory of solvation. J. Phys. Chem. Lett. 6:206-11.

Simpson, P.J., Xie, H., Bolam, D.N., Gilbert, H.J., Williamson, M.P. (2000) The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275:41137-41142.

Sipponen, M.H., Rahikainen, J., Leskinen, T., Pihlajaniemi, V., Mattinen, M.L., Lange, H., Crestini, C., Osterberg, M. (2017) Structural changes of lignin in biorefinery pretreatments and consequences to enzyme-lignin interactions. Nord. Pulp Papaer Res. J. 32:550-71.

Sipponen, M.H., Lange, H., Ago, M., Crestini, C. (2018) Understanding lignin aggregation processes. A case study: Budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain. Chem. Eng. 6:9342-51.

Socha, A.M., Parthasarathi, R.P., Shi, J., Pattathil, S., Whyte, D., Bergeron, M., George, A., Tran, K., Stavila, V., Venkatachalam, S., Hahn, M.G., Simmons, B.A., Singh, S. (2014) Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proc. Natl. Acad. Sci. U.S.A. 111:E3587-E3595.

Spiridon, I., Leluk, K., Resmerita, A.M., Darie, R.N. (2015) Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Composites Part B: Engineering. 69:342-9.

Stockmayer, W.H. (1960) Problems of the statistical thermodynamics of dilute polymer solutions. Makromolekulare Chemie. 35:54-74.

Strobel, K.L., Pfeiffer, K.A., Blanch, H.W., Clark, D.S. (2015) Engineering Cel7A carbohydrate binding module and linker for reduced lignin inhibition, Biotechnol. Bioeng. 113:1369-1374

Strobel, K.L., Pfeiffer, K.A., Blanch, H.W., Clark, D.S. (2015) Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin. J. Biol. Chem. 290:22818-22826.

Sun, S., Huang, Y., Sun, R., Tu, M. (2016) The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis. Green Chem. 18:4726-4286.

Suurnakki, A., Tenkanen, M., Siika-aho, M., Niku-paavola, M.L., Viikari, L., Buchert, J. (2000) Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose. 7:189-209.

Suzuki, S., Green, P.G., Bumgarner, R.E., Dasgupta, S., Goddard, W.A., 3rd, Blake, G.A. (1992) Benzene forms hydrogen bonds with water. Science. 257:942-5.

Takkellapati, S., Li, T., Gonzalez, M.A. (2018) An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy. 20:1615-1630.

Tu, M., Pan, X., Saddler, J.N. (2009) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J. Argric. Food Chem. 57:7771-7778.

Varnai, A., Siika-Aho, M., Viikari, L. (2013) Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs. Biotechnol. Biofuels. 6:30.

Viegas, A., Sardinha, J., Freire, F., Duarte, D.F., Carvalho, A.L., Fontes, C.M., Romao, M.J., Macedo, A.L., Cabrita, E.J. (2013) Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochem. J. 451:289-300.

Wang, H., Kobayashi, S., Hiraide, H., Cui, Z., Mochidzuki, K. (2015) The effect of nonenzymatic protein on lignocellulose enzymatic hydrolysis and simultaneous saccharification and fermentation. Appl. Biochem. Biotechnol. 175:287-299.

Wang, J., Hao, X., Wen, P., Zhang, T., Zhang, J. (2020) Adsorption and desorption of cellulase on/from lignin pretreated by dilute acid with different severities. Ind. Crops Prod. 148:112309.

Wang, J., Wang, J., Lu, Z., Zhang, J. (2020) Adsorption and desorption of cellulase on/from enzymatic residual lignin after alkali pretreatment. Ind. Crops Prod. 155:112811.

Williamson, M.P. (2013) Using chemical shift perturbation to characterise ligand binding. Prog. Nucl. Magn. Reson. Spectrosc. 73:1-16.

Williamson, R.T., Buevich, A.V., Martin, G.E., Parella, T. (2014) LR-HSQMBC: a sensitive NMR technique to probe very long-range heteronuclear coupling pathways. J. Org. Chem. 79:3887-94.

Wong, K.B., Freund, S.M., Fersht, A.R. (1996) Cold denaturation of barstar: 1H, 15N and 13C NMR assignment and characterisation of residual structure. J. Mol. Biol. 259:805-818.

Xu, C., Liu, F., Alam, M.A., Chen, H., Zhang, Y., Liang, C., Xu, H., Huang, S., Xu, J., Wang, Z. (2020) Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. Int. J. Biol. Macromol. 146:132-140.

Yanase, Y., Sakamoto, K., Imai, T. (2015) Isolation and structural elucidation of norlignan polymers from the heartwood of Cryptomeria japonica. Holzforschung. 69:281-296.

Yang, H., Zhang, Y., Yoo, C.G., Meng, X., Chen, X., Ragauskas, A.J., Yao, L. (2020) Physico-chemical properties of lignin fractions from acid pretreated corn stover and their effects on enzymatic hydrolysis of microcrystalline cellulose. Bioresources. 15:4898-4911.

Yang, Q., Pan, X. (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 113:1213-24.

Yang, Y.N., Huang, X.Y., Feng, Z.M., Jiang, J.S., Zhang, P.C. (2015) New butyrolactone type lignans from arctii fructus and their anti-inflammatory activities. J. Agric. Food Chem. 63:7958-66.

Ying, W., Shi, Z., Yang, H., Xu, G., Zheng, Z., Yang, J. (2018) Effect of alkaline lignin modification on cellulase-lignin interactions and enzymatic saccharification yield. Biotechnol. Biofuels. 11:214.

Yoshioka, K., Daidai, M., Matsumoto, Y., Mizuno, R., Katsura, Y., Hakogi, T., Yanase, H., Watanabe, T. (2018) Self-sufficient bioethanol production system using a lignin-derived adsorbent of fermentation inhibitors. ACS Sustain. Chem. Eng. 6:3070-3078

Yu, H., You, Y., Lei, F., Liu, Z., Zhang, W., Jiang, J. (2015) Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield, Bioresour. Technol. 187:161–166.

Yu, J., Wang, J., Wang, C., Liu, Y., Xu, Y., Tang, C., Chu, F. (2015) UV-absorbent lignin-based multi-arm star thermoplastic elastomers. Macromol. Rapid Commun. 36:398-404.

Yu, Z., Gwak, K.S., Treasure, T., Jameel, H., Chang, H., Park, S. (2014) Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem. 7:1942-1950.

Zhang, X., Yu, H., Huang, H., Liu, Y. (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegradation. 60:159-164.

Zhao, W., Xiao, L.-P., Song, G., Sun, R.-C., He, L., Singh, S., Simmons, B.A., Cheng, G. (2017) From lignin subunits to aggregates: insights into lignin solubilization. Green Chem. 19:3272-3281.

Zheng, W., Lan, T., Li, H., Yue, G., Zhou, H. (2020) Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate– enzyme adsorption. Biotechnol. Biofuels. 13:19.

Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R. (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100:2411-2418.

Zuiderweg, E. R. P. (2002) Mapping protein-protein interactions in solution by NMR Spectroscopy. Biochem. 41:1-7.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る