リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Inferring the evolution pathways and the explosion mechanism of core-collapse supernova through nebular spectroscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Inferring the evolution pathways and the explosion mechanism of core-collapse supernova through nebular spectroscopy

FANG, Qiliang 京都大学 DOI:10.14989/doctor.k24419

2023.03.23

概要

When a massive star (with zero-age main-sequence mass >8 solar mass, or M⊙) fails in its struggle with the
gravity force after the nuclear fuel in its interior is exhausted, without the support from the thermal pressure,
the iron core collapses to form a compact object (a neutron star or a black hole). The central region quickly
reaches to the density of the neutron star, then bounce back like a piston, which creates the strong shock wave
that rapidly eject the rest of the stellar material (the ejecta), leading to the catastrophic event called
core-collapse supernova (CCSN).
The duration of the collapsing process is very short, appears to be a sudden flash which is not captured from
observation until very recent (see for example Bersten et al. 2018). The physics that governs this process is a
fascinating problem that has confused astronomers for decades, but it is very difficult to be observed for its
extremely short time scale; what we are indeed observing is the hot, expelled ejecta that shines as bright as
billions solar luminosity (a typical value is ~1049 erg s-1). Powered by the decay chain of the unstable
radioactive elements generated during the explosion, the ejecta is bright enough to be observed from distant
for months to years after the explosion. The physical properties of the ejecta, including its mass, composition,
expansion velocity and configuration etc., are key ingredients toward understanding the properties of the
supernova progenitor and the explosion.
To decode the physical properties of the ejecta, it is important to understand how the photons are generated
and propagate in the ejecta. This is usually done by radiative transfer calculation, i.e., by assuming the specific
structure of the ejecta, and then calculate how the photons look like when they escape after their complicated
interaction with the ejecta material. The result of the calculation is further compared with the observation,
from which we can extract rich information of the ejecta. A complete understanding of the ejecta structure can
not only constrain the explosion mechanism, but can also reveal the progenitor stellar system, which is also an
important unsolved problem in astronomy.
This thesis focuses on stripped-envelope supernova (SESN), a subtype of CCSNe produced by massive stars
that have loss most of the hydrogen- or helium-rich layer before the explosion. We use the late phase
(“nebular”) spectroscopy, which is taken several months after the explosion, to explore the progenitor system
of these objects, and constrain the explosion mechanism by comparing the theoretical models and the recent
observations of supernovae. ...

この論文で使われている画像

参考文献

Anderson, J. P., Habergham, S. M., James, P. A., & Hamuy, M., 2012, MNRAS, 424, 1372

Anderson, J. P., Dessart, L., Gutiérrez, C. P., et al. 2018, NatAs, 2, 574

Arnett, W. D., 1980, ApJ, 237, 541

Arnett, W. D., 1982, ApJ, 253, 785

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123

Barbon, R., Ciatti, F., & Rosino, L. 1979, A&A, 72, 287

Barbon, R., Benetti, S., Cappellaro, E., et al. 1995, A&AS, 110, 513

Ben-Ami, S., Gal-Yam, A., Mazzali, P. A., et al. 2014, ApJ, 785, 37

Ben-Ami, S., Hachinger, S., Gal-Yam, A., et al. 2015, ApJ, 803, 40

Benetti, S., Turatto, M., Valenti, S., et al. 2011, MNRAS, 411, 2726

Bersten, M. C., Benvenuto, O. G., Nomoto, K., et al. 2012, ApJ, 757, 31

Bersten, M. C., Benvenuto, O. G., Folatelli, G., et al. 2014, AJ, 148, 68

Bersten, M. C., Folatelli, G., García, F., et al. 2018, Nature, 554, 497

Bessell, M., & Murphy, S. 2012, PASP, 124, 140

Bianco, F. B., Modjaz, M., Hicken, M., et al. 2014, ApJS, 213, 19

Blondin, S., Modjaz, M., Kirshner, R., et al. 2007, CBE Telegram, 808, 1

Brown, P. J., Breeveld, A. A., Holland, S., Kuin, P., & Pritchard, T., 2014, Astrophys. Space Sci. 354, 89

Bufano, F., Pignata, G., Bersten, M., et al. 2014, MNRAS, 439, 1807

Cano, Z. 2013, MNRAS, 434, 1098

Cao, Y., Kasliwal, M. M., Arcavi, I., et al. 2013, ApJL, 775, L7

Cappellaro, E., Mazzali, P. A., Benetti, S., et al. 1997, A&A, 328, 203

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245

Chevalier, R. A., & Soderberg, A. M. 2010, ApJL, 711, L40

Chakraborti, S., Soderberg, A., Chomiuk, L., et al. 2015, ApJ, 805, 187

Chornock, R., Filippenko, A. V., Li, W., et al. 2011, ApJ, 739, 41

Clocchiatti, A., Wheeler, J. C., Brotherton, M. S., et al. 1996, ApJ, 462, 462

Clocchiatti, A., Suntzeff, N. B., Covarrubias, R., et al. 2011, AJ, 141, 163

Colesanti, C., Jacques, C., Pimentel, E., et al. 2006, IAU Circ., 8713, 1

Collins, C., Müller, B., & Heger, A. 2018, MNRAS, 473, 1695

Dessart, L., Hillier, D. J., Li, C., & Woosley, S., 2012, MNRAS, 424, 2139

135

136

Dessart, L., Hillier, D. J., Woosley, S., et al. 2016, MNRAS, 458, 1618

Dessart, L., & Hillier, D. J. 2020, A&A, 642, A33

Dessart, L., Yoon, S.-C., Aguilera-Dena, D. R., et al. 2020, A&A, 642, A106

Dessart, L., Hillier, D. J., Sukhbold, T., et al. 2021, A&A, 656, A61

Drissen, L., Robert, C., Dutil, Y., et al. 1996, IAU Circ., 6317, 2

Drout, M. R., Soderberg, A. M., Gal-Yam, A., et al. 2011, ApJ, 741, 97

Drout, M. R., Milisavljevic, D., Parrent, J., et al. 2016, ApJ, 821, 57

Eldridge, J. J., Fraser, M., Smartt, S. J., et al. 2013, MNRAS, 436, 774

Elmhamdi, A., Danziger, I. J., Cappellaro, E., et al. 2004, A&A, 426, 963

Elmhamdi, A., Tsvetkov, D., Danziger, I. J., et al. 2011, ApJ, 731, 129

Elmhamdi, A. 2011, Acta Astronomica, 61, 179

Ennis, J. A., Rudnick, L., Reach, W. T., et al. 2006, ApJ, 652, 376

Ergon, M., Sollerman, J., Fraser, M., et al. 2014, A&A, 562, A17

Ergon, M., Jerkstrand, A., Sollerman, J., et al. 2015, A&A, 580, A142

Evans, R., Sadler, E., & McNaught, R. H. 1990, IAU Circ., 5076, 1

Fang, Q., & Maeda, K. 2018, ApJ, 864, 47

Fang, Q., Maeda, K., Kuncarayakti, H., et al. 2019, NatAs, 3, 434

Fang, Q., Maeda, K., Kuncarayakti, H., et al. 2022, ApJ, 928, 151

Filippenko, A. V., & Sargent, W. L. W. 1986, AJ, 91, 691

Filippenko, A. V. 1988, AJ, 96, 1941

Filippenko, A. V., Porter, A. C., & Sargent, W. L. W. 1990, AJ, 100, 1575

Filippenko, A. V., & Korth, S. 1991, IAU Circ., 5234, 1

Filippenko, A. V., Matheson, T., & Ho, L. C. 1993, ApJL, 415, L103

Filippenko, A. V., Barth, A. J., Matheson, T., et al. 1995, ApJL, 450, L11

Filippenko, A. V. 1997, ARA&A, 35, 309

Filippenko, A. V., Foley, R. J., & Matheson, T. 2005, IAU Circ., 8639, 2

Folatelli, G., Contreras, C., Phillips, M. M., et al. 2006, ApJ, 641, 1039

Folatelli, G., Bersten, M. C., Kuncarayakti, H., et al. 2014, ApJ, 792, 7

Folatelli, G., Bersten, M. C., Kuncarayakti, H., et al. 2015, ApJ, 811, 147

Foley, R. J., Papenkova, M. S., Swift, B. J., et al. 2003, PASP, 115, 1220

Fransson, C., & Chevalier, R. A. 1989, ApJ, 343, 323

136

137

Fremling, C., Sollerman, J., Taddia, F., et al. 2016, A&A, 593, A68

Fremling, C., Sollerman, J., Kasliwal, M. M., et al. 2018, A&A, 618, A37

Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998, Nature, 395, 670

Gal-Yam, A., Fox, D. B., Kulkarni, S. R., et al. 2005, ApJL, 630, L29

Gal-Yam, A. 2017, Handbook of Supernovae, 195

Gilkis, A., Vink, J. S., Eldridge, J. J., et al. 2019, MNRAS, 486, 4451

Gilkis, A. & Arcavi, I. 2022, MNRAS, 511, 691

Gómez, G., & López, R. 1994, AJ, 108, 195

Gómez, G., & López, R. 2002, AJ, 123, 328

Gräfener, G., & Vink, J. S. 2016, MNRAS, 455, 112

Green, D. W. E. 2006, CBE Telegram, 368, 2

Groh, J. H., Georgy, C., & Ekström, S. 2013, A&A, 558, L1

Guillochon, J., Parrent, J., Kelley, L. Z., et al. 2017, ApJ, 835, 64

Hamuy, M., Deng, J., Mazzali, P. A., et al. 2009, ApJ, 703, 1612

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357

Harutyunyan, A. H., Pfahler, P., Pastorello, A., et al. 2008, A&A, 488, 383

Heger, A., Fryer, C. L., Woosley, S. E., et al. 2003, ApJ, 591, 288

Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423, 847

Holland-Ashford, T., Lopez, L. A., Auchettl, K., et al. 2017, ApJ, 844, 84

Houck, J. C., & Fransson, C. 1996, ApJ, 456, 811

Hunter, J. D. 2007, CSE, 9, 90

Hunter, D. J., Valenti, S., Kotak, R., et al. 2009, A&A. 508, 371

Iwamoto, K., Mazzali, P. A., Nomoto, K., et al. 1998, Nature. 395, 672

Iwamoto, K., Nakamura, T., Nomoto, K., et al. 2000, ApJ, 534, 660

Jeffery, D. J., Branch, D., Filippenko, A. V., et al. 1991, ApJL, 377, L89

Jerkstrand, A., Fransson, C., Maguire, K., et al. 2012, A&A, 546, A28

Jerkstrand, A., Smartt, S. J., Fraser, M., et al. 2014, MNRAS, 439, 3694

Jerkstrand, A., Ergon, M., Smartt, S. J., et al. 2015a, A&A, 573, A12

Jerkstrand, A., Timmes, F. X., Magkotsios, G., et al. 2015b, ApJ, 807, 110

Jerkstrand, A., Smartt, S. J., Sollerman, J., et al. 2015c, MNRAS, 448, 2482

Jerkstrand, A. 2017, Handbook of Supernovae (Cham: Springer), 795

Jerkstrand, A., Smartt, S. J., Inserra, C., et al. 2017, ApJ, 835, 13

Kashikawa, N., Aoki, K., Asai, R., et al. 2002, PASJ, 54, 819

137

138

Katsuda, S., Morii, M., Janka, H.-T., et al. 2018, ApJ, 856, 18

Khokhlov, A.M., Höflich, P.A., Oran, E.S., et al. 1999, ApJ, 524, L107

Kifonidis, K., Plewa, T., Janka, H. T., et al. 2003, A&A, 408, 621

Kifonidis, K., Plewa, T., Scheck, L., et al. 2006, A&A, 453, 661

Kilpatrick, C. D., Foley, R. J., Abramson, L. E., et al. 2017, MNRAS, 465, 4650

Kilpatrick, C. D., Drout, M. R., Auchettl, K., et al. 2021, MNRAS, 504, 2073

Kozma, C., & Fransson, C. 1992, ApJ, 390, 602

Kozma, C., & Fransson, C. 1998, ApJ, 497, 431

Kuncarayakti, H., Maeda, K., Bersten, M. C., et al. 2015, A&A, 579, A95

Kuncarayakti, H., Anderson, J. P., Galbany, L., et al. 2018, A&A, 613, A35

Li, H., & McCray, R. 1996, ApJ, 456, 370

Li, W., Leaman, J., Chornock, R., et al. 2011, MNRAS, 412, 1441

Limongi, M., & Chieffi, A. 2003, ApJ, 592, 404

Liu, Y.-Q., Modjaz, M., Bianco, F. B., & Graur, O. 2016, ApJ, 827, 90

Leonard, D. C., Filippenko, A. V., Gates, E. L., et al. 2002, PASP, 114, 35

Leonard, D. C., Filippenko, A. V., Ganeshalingam, M., et al. 2006, Nature, 440, 505

Loader, C. 1999, Local Regression and Likelihood (New York: Springer)

Loader, C. 2018, locfit: Local Regression, Likelihood and Density Estimation

Lyman, J. D., Bersier, D., James, P. A., et al. 2016, MNRAS, 457, 328

Maeda, K., Nakamura, T., Nomoto, K., et al. 2002, ApJ, 565, 405

Maeda, K., & Nomoto, K. 2003, ApJ, 598, 1163

Maeda, K., Mazzali, P. A., Deng, J., et al. 2003, ApJ, 593, 931

Maeda, K., Nomoto, K., Mazzali, P. A., et al. 2006a, ApJ, 640, 854

Maeda, K., Mazzali, P. A., & Nomoto, K. 2006b, ApJ, 645, 1331

Maeda, K., Kawabata, K., Tanaka, M., et al. 2007a, ApJL, 658, L5

Maeda, K., Tanaka, M., Nomoto, K., et al. 2007b, ApJ, 666, 1069

Maeda, K., Kawabata, K., Mazzali, P. A., et al. 2008, Sci, 319, 1220

Maeda, K., Hattori, T., Milisavljevic, D., et al. 2015, ApJ, 807, 35

Makarov, D., Prugniel, P., Terekhova, N., et al. 2014, A&A, 570, A13

Malesani, D., Fynbo, J. P. U., Hjorth, J., et al.2009, Probing Stellar Populations Out to the Distant Universe:

Cefalu 2008, Proceedings of the International Conference, 1111, 627

138

139

Matheson, T., Filippenko, A. V., Barth, A. J., et al. 2000a, AJ, 120, 1487

Matheson, T., Filippenko, A. V., Ho, L. C., et al. 2000b, AJ, 120, 1499

Matheson, T., Filippenko, A. V., Li, W., et al. 2001, AJ, 121, 1648

Maund, J. R., Smartt, S. J., Kudritzki, R. P., et al. 2004, Nature, 427, 129

Maund, J. R., Wheeler, J. C., Patat, F., et al. 2007, ApJ, 671, 1944

Maund, J. R., Fraser, M., Ergon, M., et al. 2011, ApJL, 739, L37

Maurer, J. I., Mazzali, P. A., Deng, J., et al. 2010a, MNRAS, 402, 161

Maurer, I., Mazzali, P. A., Taubenberger, S., & Hachinger, S. 2010b, MNRAS, 409, 1441

Mazzali, P. A., Iwamoto, K., & Nomoto, K. 2000, ApJ, 545, 407

Mazzali, P. A., Deng, J., Maeda, K., et al. 2002, ApJL, 572, L61

Mazzali, P. A., Kawabata, K. S., Maeda, K., et al. 2005, Science, 308, 1284

Mazzali, P. A., Deng, J., Nomoto, K., et al. 2006, Nature, 442, 1018

Milisavljevic, D., Fesen, R. A., Gerardy, C. L., et al. 2010, ApJ, 709, 1343

Milisavljevic, D., Margutti, R., Soderberg, A. M., et al. 2013a, ApJ, 767, 71

Milisavljevic, D., Soderberg, A. M., Margutti, R., et al. 2013b, ApJL, 770, L38

Milisavljevic, D., Margutti, R., Kamble, A., et al. 2015a, ApJ, 815, 120

Milisavljevic, D., Margutti, R., Parrent, J. T., et al. 2015b, ApJ, 799, 51

Minkowski, R. 1941, PASP, 53, 224

Modjaz, M., Stanek, K. Z., Garnavich, P. M., et al. 2006, ApJL, 645, L21

Modjaz, M. 2007, PhD thesis, Harvard Univ.

Modjaz, M., Kirshner, R. P., Blondin, S., et al. 2008, ApJL, 687, L9

Modjaz, M., Li, W., Butler, N., et al. 2009, ApJ, 702, 226

Modjaz, M., Blondin, S., Kirshner, R. P., et al. 2014, AJ, 147, 99

Modjaz, M., Liu, Y. Q., Bianco, F. B., et al. 2016, ApJ, 832, 108

Morales-Garoffolo, A., Elias-Rosa, N., Benetti, S., et al. 2014, MNRAS, 445, 1647

Morales-Garoffolo, A., Elias-Rosa, N., Bersten, M., et al. 2015, MNRAS, 454, 95

Morales-Garoffolo, A. 2016, Ph.D. Thesis

Moriya, T. J., Suzuki, A., Takiwaki, T., et al. 2020, MNRAS, 497, 1619

Morozova, V., Piro, A. L., Renzo, M., et al. 2015, ApJ, 814, 63

Müller, B., Heger, A., Liptai, D., et al. 2016, MNRAS, 460, 742

Nagao, T., Patat, F., Taubenberger, S., et al. 2021, MNRAS, 505, 3664

139

140

Nakamura, T., Mazzali, P. A., Nomoto, K., et al. 2001, ApJ, 550, 991

Nakamura, K., Takiwaki, T., Kuroda, T., et al. 2015, PASJ, 67, 107

Nakano, S., Aoki, M., Kushida, R., et al. 1996, IAU Circ., 6454, 1

Nakano, S., Aoki, M., Jha, S., et al. 1997, IAU Circ., 6770, 2

Nomoto, K. I., Iwamoto, K., & Suzuki, T. 1995, Phys. Rep. 256, 173

O’Connor, E., & Ott, C. D., 2011, ApJ, 730, 70

Ouchi, R., & Maeda, K. 2017, ApJ, 840, 90

Park, T., Kashyap, V. L., Siemiginowska, A., et al. 2006, ApJ, 652, 610

Pastorello, A., Smartt, S. J., Mattila, S., et al. 2007, Nature, 447, 829

Patat, F., Chugai, N., & Mazzali, P. A. 1995, A&A, 299, 715

Patat, F., Cappellaro, E., Danziger, J., et al. 2001, ApJ, 555, 900

Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3

Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4

Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15

Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34

Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10

Pian, E., Mazzali, P. A., Masetti, N., et al. 2006, Nature, 442, 1011

Prentice, S. J., Mazzali, P. A., Pian, E., et al. 2016, MNRAS, 458, 2973

Prentice, S. J., & Mazzali, P. A. 2017, ApJ, 469, 2672

Prentice, S. J., Maguire, K., Siebenaler, L., et al. 2022, MNRAS, 514, 5686

Qiu, Y., Li, W., Qiao, Q., et al. 1999, AJ, 117, 736

Quimby, R., Mondol, P., Castro, F., et al. 2006, IAU Circ., 8657, 1

R Core Team 2021, R: A Language and Environment for Statistical Computing (Vienna)

Richmond, M. W., Treffers, R. R., Filippenko, A. V., & Paik, Y. 1996a, AJ, 112, 732

Richmond, M. W., van Dyk, S. D., Ho, W., et al. 1996b, AJ, 111, 327

Roy, R., Kumar, B., Maund, J. R., et al. 2013, MNRAS, 434, 2032

Sahu, D. K., Gurugubelli, U. K., Anupama, G. C., et al. 2011, MNRAS, 413, 2583

Shigeyama, T., Suzuki, T., Kumagai, S., et al. 1994, ApJ, 420, 341

Shivvers, I., Mazzali, P., Silverman, J. M., et al. 2013, MNRAS, 436, 3614

Shivvers, I., Modjaz, M., Zheng, W., et al. 2017, PASP, 129, 054201

Shivvers, I., Filippenko, A. V., Silverman, J. M., et al. 2019, MNRAS, 482, 1545

Silverman, J. M., Mazzali, P., Chornock, R., et al. 2009, PASP, 121, 689

Smartt, S. J. 2009, ARA&A, 47, 63

Smartt, S. J. 2015, PASA, 32, e016

140

141

Smith, N., Li, W., Filippenko, A. V., & Chornock, R. 2011, MNRAS, 412, 1522

Smith, N. 2014, ARA&A, 52, 487

Smith, N., Mauerhan, J. C., & Prieto, J. L., 2014, MNRAS, 438, 1191

Stancliffe, R. J., & Eldridge, J. J., 2009, MNRAS, 396, 1699

Stritzinger, M., Mazzali, P., Phillips, M. M., et al. 2009, ApJ, 696, 713

Stritzinger, M. D., Anderson, J. P., Contreras, C., et al. 2018, A&A, 609, A134

Sukhbold, T., Ertl, T., Woosley, S. E., et al. 2016, ApJ, 821, 38

Suwa, Y., Tominaga, N., & Maeda, K., 2019, MNRAS, 483, 3607

Szalai, T., Vinkó, J., Nagy, A. P., et al. 2016, MNRAS, 460, 1500

Taddia, F., Fremling, C., Sollerman, J., et al. 2016, A&A, 592, A89

Taddia, F., Stritzinger, M. D., Bersten, M., et al. 2018, A&A, 609, A136

Taddia, F., Sollerman, J., Fremling, C., et al. 2019, A&A, 621, A64

Tartaglia, L., Fraser, M., Sand, D. J., et al. 2017, ApJL, 836, L12

Taubenberger, S., Pastorello, A., Mazzali, P. A., et al. 2006, MNRAS, 371, 1459

Taubenberger, S., Valenti, S., Benetti, S., et al. 2009, MNRAS, 397, 677

Taubenberger, S., Navasardyan, H., Maurer, J. I., et al. 2011, MNRAS, 413, 2140

Tauris, T. M., Langer, N., & Podsiadlowski, P., 2015, MNRAS., 451, 2123

Terreran, G., Jerkstrand, A., Benetti, S., et al. 2016, MNRAS, 462, 137

Tody, D. 1986, Proc. SPIE, 627, 733

Tody, D. 1993, in ASP Conf. Ser. 52, Astronomical Data Analysis Software and Systems II, ed. R. J. Hanisch

(San Francisco, CA: ASP), 173

Tominaga, N. 2009, ApJ, 343 690, 526

Tsvetkov, D. Y., Volkov, I. M., Baklanov, P., Blinnikov, S., & Tuchin, O. 2009, Perem. Zvezdy, 29, 2

Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86

Turatto, M., Benetti, S., & Cappellaro, E. 2003, in From Twilight to Highlight: The Physics of Supernovae, ed.

W. Hillebrandt & B. Leibundgut (Berlin: Springer), 200

Ugliano, M., Janka, H.-T., Marek, A., et al. 2012, ApJ, 757, 69

Valenti, S., Benetti, S., Cappellaro, E., et al. 2008, MNRAS, 383, 1485

Valenti, S., Fraser, M., Benetti, S., et al. 2011, MNRAS, 416, 3138

Valenti, S., Taubenberger, S., Pastorello, A., et al. 2012, ApJL, 749, L28

Vanbeveren, D., De Loore, C., & Van Rensbergen, W., 1998, Astron. Astrophys. Rev. 9, 63

van Dokkum, P. G. 2001, PASP, 113, 1420

141

142

Van Dyk, S. D., Zheng, W., Fox, O. D., et al. 2014, AJ, 147, 37

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261

Walker, E. S., Mazzali, P. A., Pian, E., et al. 2014, MNRAS, 442, 2768

Wang, L., Howell, D. A., Höflflich, P., et al. 2001, ApJ, 550, 1030

Wang, L., & Wheeler, J. C. 2008, ARA&A, 46, 433

Weiler, K. W., Williams, C. L., Panagia, N., et al. 2007, ApJ, 671, 1959

Wheeler, J. C., Harkness, R. P., Clocchiatti, A., et al. 1994, ApJL, 436, L135

Wongwathanarat, A., Muller, E., & Janka, H. T. 2015, A&A, 577, A48

Woosley, S. E., Heger, A., & Weaver, T. A. 2002, Rev. Mod. Phys. 74, 1015

Woosley, S. E., & Bloom, J. S. 2006, ARA&A, 44, 507

Yaron, O., & Gal-Yam, A. 2012, PASP, 124, 668

Yoon, S.-C. 2015, PASA, 32, e015

Yoon, S.-C. 2017, MNRAS, 470, 3970

Yoon, S.-C., Dessart, L., & Clocchiatti, A., 2017, ApJ., 840, 10

Yoon, S.-C., Chun, W., Tolstov, A., et al. 2019, ApJ, 872, 174

Yoshida, M., Shimizu, Y., Sasaki, T., et al. 2000, Proc. SPIE, 4009, 240

Yoshii, Y., Tomita, H., Kobayashi, Y., et al. 2003, ApJ, 592, 467

Zhang, J., Wang, X., Vinkó, J., et al. 2018, ApJ, 863, 109

142

143

List of Figures

1.1. The classification of CCSNe............................................................................................................................................................2

1.2. The illustration of the topics of interest in this thesis....................................................................................................................5

1.3. The illustration of how the analysis on nebular spectra solves the topics listed in Figure 1.2...................................................6

2.1. The V-band light curves of 7 SNe IIb and 2 SNe Ib studied in this work...................................................................................13

2.2. The lighr curve fitting results..........................................................................................................................................................16

2.3. The spectra of SNe IIb/Ib at ∼200 days after the peak magnitude is reached............................................................................17

2.4. An example of the line decomposition.............................................................................................................................................18

2.5. A comparison between the results of the two fitting strategies to the Hα-like fluxes in the nebular spectra...........................19

2.6. Evolution of the luminosities of the different nebular lines...........................................................................................................20

2.7. V-band peak magnitudes vs. the luminosities of the nebular lines in logarithmic scale, at 200 days after the V-band

maximum...................................................................................................................................................................................................23

2.8. Relative gamma-ray deposition luminosities vs. the luminosities of the nebular lines in logarithmic scale, at 200 days after

the V-band maximum...............................................................................................................................................................................23

2.9. Luminosity scatter level of Hα-like structure compared with other emission lines....................................................................24

2.10. The ejecta mass versus the line ratio of [O I] to [Ca II]...............................................................................................................25

2.11. The evolution of the luminosities of nebular lines into the very late phase................................................................................27

2.12. (1) The deposited energy vs. line luminosity at different epochs; (2) The evolution of the rms of different emission lines

and the quadratic differences of the rms of the Hα-like structure and other nebular lines..............................................................29

3.1. The average spectra of different SESN subtypes obtained around 200 days after maximum light..........................................35

3.2. The correlation between early light curve width and the [O I]/[Ca II] ratio...............................................................................35

3.3. The distribution of LN/LO ([N II]/[O I]) and LO/LCa ([O I]/[Ca II]) among different SN subtypes............................................36

3S-1. An illustration of SNe of different subtypes in this work............................................................................................................42

3S-2. Examples of the line decomposition for SNe of different subtypes............................................................................................43

3S-3.Effects of line evolutions..................................................................................................................................................................43

3S-4.The distribution of the line ratios of different SNe subtypes from 104 Monte-Carlo simulations...........................................44

4.1. The nebular spectra of the Subaru/FOCAS objects......................................................................................................................53

4.2. A detailed example of observable measurement in Section 2.3....................................................................................................55

4.3. A comparison between the line width measure in this work and previous works......................................................................56

4.4. Examples of the four line profiles....................................................................................................................................................58

143

144

4.5. The fractional flux of the secondary component is plotted against the central wavelength’s separation.................................59

4.6. (a)–(d) The distributions of the [O I] profile of different SN subtypes; In panel (e), the probability for DP detection as a

function of intrinsic DP fraction for SNe Ic-BL is shown.................................................................................................................... 61

4.7. (a) The relation between the [O I]/[Ca II] ratio and the [O I] width Δλblue. (b) Cumulative fraction of the [O I]/[Ca II] ratio.

(c) Cumulative fraction of the [O I] width Δλblue...................................................................................................................................63

4.8. Matrix of AD test significance level when the [O I]/[Ca II] and [O I] width distributions of different SN subtypes are

compared...................................................................................................................................................................................................63

4.9. Upper panel: the relation between the [O I]/[Ca II] ratio and the [O I] width Δλblue; Lower panel: the residual of the

fitting..........................................................................................................................................................................................................65

4.10.The correlations between the [O I]/[Ca II] ratio and [O I] width of different line profile classes............................................65

4.11.Upper panel: the cumulative fractions of log [O I]/[Ca II] of the objects with different line profiles;Lower panel: the

fractions of line profile as functions of log [O I]/[Ca II] are plotted by different colored solid lines and different markers........67

4.12. The fitting results of the bipolar explosion models with different degrees of axisymmetry and different viewing angles

from the direction of the poles.................................................................................................................................................................69

4.13. Upper panel: the cumulative fractions of log [O I]/[Ca II] of the objects with single-peak (NC + GS) and non-single (DP +

AS) profiles; Lower panel: the same as the lower panel of Figure 4.11 but based on the classification scheme of single-peak and

non-single profiles....................................................................................................................................................................................75

4.14. Left panels: the [O I]/[Ca II] ratio and the [O I] width Δλblue vs. the spectral phase relative to the mean value of the

sample;Middle panels: the time evolution of [O I]/[Ca II] and Δλblue of individual objects;Right panels: the distributions of the

rates of change of log [O I]/[Ca II] and log Δλblue..................................................................................................................................78

4.15. The relation between log [O I]/[Ca II] and its time evolution rate.............................................................................................80

4.16. The symmetric center of the excess emission and the deviation of the measured line widths from Δλ6563 (see the main text

for definitions)..........................................................................................................................................................................................81

4.17. Upper panel: the histogram of the central wavelength offset of the narrow core with respect to the broad base;Lower

panels: alternative fits to the SNe 2000ew and 2008ax.........................................................................................................................83

4.18. The blue solid line shows the relation between the Nred/Nblue ratio of the NC objects and the vboundary;The red solid line

shows the relation between the mean phase of the NC objects and vboundary.......................................................................................84

4.B-1. Observed [O I] of the SNe IIb in the sample fitted by multi-Gaussians..................................................................................91

4.B-2. Same as Figure 4B-1, but for the SNe Ib sample.......................................................................................................................92

4.B-3. Same as Figure 4B-1, but for the SNe Ic sample........................................................................................................................93

144

145

4.B-4. Same as Figure 4B-1, but for the SNe Ic-BL and Ib/c sample................................................................................................94

4.C-1. The evolution of [O I]/[Ca II] of well-observed SNe................................................................................................................94

5.1. Upper panel: the density structures of the He stars with MZAMS = 13, 18, 23 M⊙, and the bare CO core with MZAMS = 18, 23

M⊙; Lower panel: the mass fractions of 4He, 12C, 16O and 24Mg for the helium star with MZAMS = 20 M⊙...................................98

5.2. Upper panel: the relation between the CO core mass and the MZAMS of the progenitor models; Lower panel: the relation

between the oxygen mass and the CO core mass.................................................................................................................................99

5.3. Upper panel: the 56Ni mass fraction of He20 model with different degrees of mixing;Middle panel: the 16O mass fraction of

He20 model with different degrees of mixing;Lower panel: the

16

O mass fraction of CO20 model with different degrees of

mixing.....................................................................................................................................................................................................101

5.4. The physical properties of the ejecta of He18 and CO18 models (labeled by different colors) with different kinetic energies

(labeled by different line styles)...........................................................................................................................................................102

5.5. The relation between the [O I]/[Ca II] of SNe IIb model spectra (Jerkstrand et al. 2015a) and the O mass of the ejecta..103

5.6. The line profile constructed for He15 and He20 models with different kinetic energies........................................................104

5.7. The relation between VO and the EK of the ejecta.......................................................................................................................105

5.8. Upper panel: The observed [O I]/[Ca II]-line width correlation;Lower panel: The relation between the CO core mass MCO

of the models and the kinetic energy required to produce the observed [O I]/[Ca II]-line width correlation.............................107

5.9. The linear regression to the model line width VO(MO, EK) as function of oxygen mass MO and kinetic energy EK..............110

5.10. Upper panel: The model [O I] width with different degrees of macroscopic mixing; Lower panel: The [O I]/[Ca II]-line

width track of models with different degrees of macroscopic mixing while the MCO-EK relation is fixed....................................112

5.11. The MCO-EK relation required to produce the observed [O I][Ca II]-line width relation for the helium star models with

different degrees of macroscopic mixing.............................................................................................................................................112

5.12. The MCO-EK relation derived from the early phase observation..............................................................................................114

6.1. The analysis of the line widths.......................................................................................................................................................121

6.2. The configuration of the axisymmetric model..............................................................................................................................122

6.3. The occurrence rates of bipolar SNe and double-peaked [Ca II] as functions of [O I]/[Ca II]...............................................123

6.S-1. A demonstration of the line width measurement procedure of [O I] (left panels) and [Ca II] (right panels)....................125

6.S-2. The synthesized [O I] (left) and [Ca II] (right) with Vmax=5000 km s-1...................................................................................127

6.S-3. The fit of the synthesized [O I] (blue) and [Ca II] (red) to the observed line profiles (black) of the objects considered as

bipolar explosion in this work...............................................................................................................................................................128

6.S-4. The fit to the [Ca II] complex (left) and [O I] (right) of SN ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る